Database
REAL AND COMPLEX NUMBERS
Integer sets
Simple number properties
halfpos2
Next ⟩
halfpos
Metamath Proof Explorer
Ascii
Unicode
Theorem
halfpos2
Description:
A number is positive iff its half is positive.
(Contributed by
NM
, 10-Apr-2005)
Ref
Expression
Assertion
halfpos2
⊢
A
∈
ℝ
→
0
<
A
↔
0
<
A
2
Proof
Step
Hyp
Ref
Expression
1
2re
⊢
2
∈
ℝ
2
2pos
⊢
0
<
2
3
gt0div
⊢
A
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
0
<
A
↔
0
<
A
2
4
1
2
3
mp3an23
⊢
A
∈
ℝ
→
0
<
A
↔
0
<
A
2