Metamath Proof Explorer


Theorem halfthird

Description: Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015)

Ref Expression
Assertion halfthird 1 2 1 3 = 1 6

Proof

Step Hyp Ref Expression
1 2cn 2
2 3cn 3
3 2ne0 2 0
4 3ne0 3 0
5 1 2 3 4 subreci 1 2 1 3 = 3 2 2 3
6 ax-1cn 1
7 2p1e3 2 + 1 = 3
8 2 1 6 7 subaddrii 3 2 = 1
9 3t2e6 3 2 = 6
10 2 1 9 mulcomli 2 3 = 6
11 8 10 oveq12i 3 2 2 3 = 1 6
12 5 11 eqtri 1 2 1 3 = 1 6