Metamath Proof Explorer


Theorem harmonic

Description: The harmonic series H diverges. This fact follows from the stronger emcl , which establishes that the harmonic series grows as log n + gamma +o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). This is Metamath 100 proof #34. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses harmonic.1 F = n 1 n
harmonic.2 H = seq 1 + F
Assertion harmonic ¬ H dom

Proof

Step Hyp Ref Expression
1 harmonic.1 F = n 1 n
2 harmonic.2 H = seq 1 + F
3 nn0uz 0 = 0
4 0zd H dom 0
5 1ex 1 V
6 5 fvconst2 k 0 0 × 1 k = 1
7 6 adantl H dom k 0 0 × 1 k = 1
8 1red H dom k 0 1
9 2 eleq1i H dom seq 1 + F dom
10 9 biimpi H dom seq 1 + F dom
11 oveq2 n = k 1 n = 1 k
12 ovex 1 k V
13 11 1 12 fvmpt k F k = 1 k
14 nnrecre k 1 k
15 13 14 eqeltrd k F k
16 15 adantl H dom k F k
17 nnrp k k +
18 17 rpreccld k 1 k +
19 18 rpge0d k 0 1 k
20 19 13 breqtrrd k 0 F k
21 20 adantl H dom k 0 F k
22 nnre k k
23 22 lep1d k k k + 1
24 nngt0 k 0 < k
25 peano2re k k + 1
26 22 25 syl k k + 1
27 peano2nn k k + 1
28 27 nngt0d k 0 < k + 1
29 lerec k 0 < k k + 1 0 < k + 1 k k + 1 1 k + 1 1 k
30 22 24 26 28 29 syl22anc k k k + 1 1 k + 1 1 k
31 23 30 mpbid k 1 k + 1 1 k
32 oveq2 n = k + 1 1 n = 1 k + 1
33 ovex 1 k + 1 V
34 32 1 33 fvmpt k + 1 F k + 1 = 1 k + 1
35 27 34 syl k F k + 1 = 1 k + 1
36 31 35 13 3brtr4d k F k + 1 F k
37 36 adantl H dom k F k + 1 F k
38 oveq2 k = j 2 k = 2 j
39 38 fveq2d k = j F 2 k = F 2 j
40 38 39 oveq12d k = j 2 k F 2 k = 2 j F 2 j
41 fconstmpt 0 × 1 = k 0 1
42 2nn 2
43 nnexpcl 2 k 0 2 k
44 42 43 mpan k 0 2 k
45 oveq2 n = 2 k 1 n = 1 2 k
46 ovex 1 2 k V
47 45 1 46 fvmpt 2 k F 2 k = 1 2 k
48 44 47 syl k 0 F 2 k = 1 2 k
49 48 oveq2d k 0 2 k F 2 k = 2 k 1 2 k
50 nncn 2 k 2 k
51 nnne0 2 k 2 k 0
52 50 51 recidd 2 k 2 k 1 2 k = 1
53 44 52 syl k 0 2 k 1 2 k = 1
54 49 53 eqtrd k 0 2 k F 2 k = 1
55 54 mpteq2ia k 0 2 k F 2 k = k 0 1
56 41 55 eqtr4i 0 × 1 = k 0 2 k F 2 k
57 ovex 2 j F 2 j V
58 40 56 57 fvmpt j 0 0 × 1 j = 2 j F 2 j
59 58 adantl H dom j 0 0 × 1 j = 2 j F 2 j
60 16 21 37 59 climcnds H dom seq 1 + F dom seq 0 + 0 × 1 dom
61 10 60 mpbid H dom seq 0 + 0 × 1 dom
62 3 4 7 8 61 isumrecl H dom k 0 1
63 arch k 0 1 j k 0 1 < j
64 62 63 syl H dom j k 0 1 < j
65 fzfid H dom j 1 j Fin
66 ax-1cn 1
67 fsumconst 1 j Fin 1 k = 1 j 1 = 1 j 1
68 65 66 67 sylancl H dom j k = 1 j 1 = 1 j 1
69 nnnn0 j j 0
70 69 adantl H dom j j 0
71 hashfz1 j 0 1 j = j
72 70 71 syl H dom j 1 j = j
73 72 oveq1d H dom j 1 j 1 = j 1
74 nncn j j
75 74 adantl H dom j j
76 75 mulid1d H dom j j 1 = j
77 68 73 76 3eqtrd H dom j k = 1 j 1 = j
78 0zd H dom j 0
79 elfznn k 1 j k
80 nnnn0 k k 0
81 79 80 syl k 1 j k 0
82 81 ssriv 1 j 0
83 82 a1i H dom j 1 j 0
84 6 adantl H dom j k 0 0 × 1 k = 1
85 1red H dom j k 0 1
86 0le1 0 1
87 86 a1i H dom j k 0 0 1
88 61 adantr H dom j seq 0 + 0 × 1 dom
89 3 78 65 83 84 85 87 88 isumless H dom j k = 1 j 1 k 0 1
90 77 89 eqbrtrrd H dom j j k 0 1
91 nnre j j
92 lenlt j k 0 1 j k 0 1 ¬ k 0 1 < j
93 91 62 92 syl2anr H dom j j k 0 1 ¬ k 0 1 < j
94 90 93 mpbid H dom j ¬ k 0 1 < j
95 94 nrexdv H dom ¬ j k 0 1 < j
96 64 95 pm2.65i ¬ H dom