Step |
Hyp |
Ref |
Expression |
1 |
|
harmonic.1 |
|
2 |
|
harmonic.2 |
|
3 |
|
nn0uz |
|
4 |
|
0zd |
|
5 |
|
1ex |
|
6 |
5
|
fvconst2 |
|
7 |
6
|
adantl |
|
8 |
|
1red |
|
9 |
2
|
eleq1i |
|
10 |
9
|
biimpi |
|
11 |
|
oveq2 |
|
12 |
|
ovex |
|
13 |
11 1 12
|
fvmpt |
|
14 |
|
nnrecre |
|
15 |
13 14
|
eqeltrd |
|
16 |
15
|
adantl |
|
17 |
|
nnrp |
|
18 |
17
|
rpreccld |
|
19 |
18
|
rpge0d |
|
20 |
19 13
|
breqtrrd |
|
21 |
20
|
adantl |
|
22 |
|
nnre |
|
23 |
22
|
lep1d |
|
24 |
|
nngt0 |
|
25 |
|
peano2re |
|
26 |
22 25
|
syl |
|
27 |
|
peano2nn |
|
28 |
27
|
nngt0d |
|
29 |
|
lerec |
|
30 |
22 24 26 28 29
|
syl22anc |
|
31 |
23 30
|
mpbid |
|
32 |
|
oveq2 |
|
33 |
|
ovex |
|
34 |
32 1 33
|
fvmpt |
|
35 |
27 34
|
syl |
|
36 |
31 35 13
|
3brtr4d |
|
37 |
36
|
adantl |
|
38 |
|
oveq2 |
|
39 |
38
|
fveq2d |
|
40 |
38 39
|
oveq12d |
|
41 |
|
fconstmpt |
|
42 |
|
2nn |
|
43 |
|
nnexpcl |
|
44 |
42 43
|
mpan |
|
45 |
|
oveq2 |
|
46 |
|
ovex |
|
47 |
45 1 46
|
fvmpt |
|
48 |
44 47
|
syl |
|
49 |
48
|
oveq2d |
|
50 |
|
nncn |
|
51 |
|
nnne0 |
|
52 |
50 51
|
recidd |
|
53 |
44 52
|
syl |
|
54 |
49 53
|
eqtrd |
|
55 |
54
|
mpteq2ia |
|
56 |
41 55
|
eqtr4i |
|
57 |
|
ovex |
|
58 |
40 56 57
|
fvmpt |
|
59 |
58
|
adantl |
|
60 |
16 21 37 59
|
climcnds |
|
61 |
10 60
|
mpbid |
|
62 |
3 4 7 8 61
|
isumrecl |
|
63 |
|
arch |
|
64 |
62 63
|
syl |
|
65 |
|
fzfid |
|
66 |
|
ax-1cn |
|
67 |
|
fsumconst |
|
68 |
65 66 67
|
sylancl |
|
69 |
|
nnnn0 |
|
70 |
69
|
adantl |
|
71 |
|
hashfz1 |
|
72 |
70 71
|
syl |
|
73 |
72
|
oveq1d |
|
74 |
|
nncn |
|
75 |
74
|
adantl |
|
76 |
75
|
mulid1d |
|
77 |
68 73 76
|
3eqtrd |
|
78 |
|
0zd |
|
79 |
|
elfznn |
|
80 |
|
nnnn0 |
|
81 |
79 80
|
syl |
|
82 |
81
|
ssriv |
|
83 |
82
|
a1i |
|
84 |
6
|
adantl |
|
85 |
|
1red |
|
86 |
|
0le1 |
|
87 |
86
|
a1i |
|
88 |
61
|
adantr |
|
89 |
3 78 65 83 84 85 87 88
|
isumless |
|
90 |
77 89
|
eqbrtrrd |
|
91 |
|
nnre |
|
92 |
|
lenlt |
|
93 |
91 62 92
|
syl2anr |
|
94 |
90 93
|
mpbid |
|
95 |
94
|
nrexdv |
|
96 |
64 95
|
pm2.65i |
|