Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|
2 |
|
0re |
|
3 |
|
emre |
|
4 |
|
2re |
|
5 |
|
ere |
|
6 |
|
egt2lt3 |
|
7 |
6
|
simpli |
|
8 |
4 5 7
|
ltleii |
|
9 |
|
2rp |
|
10 |
|
epr |
|
11 |
|
logleb |
|
12 |
9 10 11
|
mp2an |
|
13 |
8 12
|
mpbi |
|
14 |
|
loge |
|
15 |
13 14
|
breqtri |
|
16 |
|
1re |
|
17 |
|
relogcl |
|
18 |
9 17
|
ax-mp |
|
19 |
16 18
|
subge0i |
|
20 |
15 19
|
mpbir |
|
21 |
3
|
leidi |
|
22 |
|
iccss |
|
23 |
2 3 20 21 22
|
mp4an |
|
24 |
|
harmonicbnd2 |
|
25 |
23 24
|
sselid |
|
26 |
|
oveq2 |
|
27 |
|
fz10 |
|
28 |
26 27
|
eqtrdi |
|
29 |
28
|
sumeq1d |
|
30 |
|
sum0 |
|
31 |
29 30
|
eqtrdi |
|
32 |
|
fv0p1e1 |
|
33 |
|
log1 |
|
34 |
32 33
|
eqtrdi |
|
35 |
31 34
|
oveq12d |
|
36 |
|
0m0e0 |
|
37 |
35 36
|
eqtrdi |
|
38 |
2
|
leidi |
|
39 |
|
emgt0 |
|
40 |
2 3 39
|
ltleii |
|
41 |
2 3
|
elicc2i |
|
42 |
2 38 40 41
|
mpbir3an |
|
43 |
37 42
|
eqeltrdi |
|
44 |
25 43
|
jaoi |
|
45 |
1 44
|
sylbi |
|