Metamath Proof Explorer


Theorem harmonicbnd4

Description: The asymptotic behavior of sum_ m <_ A , 1 / m = log A + gamma + O ( 1 / A ) . (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Assertion harmonicbnd4 A + m = 1 A 1 m log A + γ 1 A

Proof

Step Hyp Ref Expression
1 fzfid A + 1 A Fin
2 elfznn m 1 A m
3 2 adantl A + m 1 A m
4 3 nnrecred A + m 1 A 1 m
5 1 4 fsumrecl A + m = 1 A 1 m
6 5 recnd A + m = 1 A 1 m
7 relogcl A + log A
8 7 recnd A + log A
9 emre γ
10 9 a1i A + γ
11 10 recnd A + γ
12 6 8 11 subsub4d A + m = 1 A 1 m - log A - γ = m = 1 A 1 m log A + γ
13 12 fveq2d A + m = 1 A 1 m - log A - γ = m = 1 A 1 m log A + γ
14 rpreccl A + 1 A +
15 14 rpred A + 1 A
16 resubcl γ 1 A γ 1 A
17 9 15 16 sylancr A + γ 1 A
18 rprege0 A + A 0 A
19 flge0nn0 A 0 A A 0
20 18 19 syl A + A 0
21 nn0p1nn A 0 A + 1
22 20 21 syl A + A + 1
23 22 nnrpd A + A + 1 +
24 relogcl A + 1 + log A + 1
25 23 24 syl A + log A + 1
26 5 25 resubcld A + m = 1 A 1 m log A + 1
27 5 7 resubcld A + m = 1 A 1 m log A
28 22 nnrecred A + 1 A + 1
29 fzfid A + 1 A + 1 Fin
30 elfznn m 1 A + 1 m
31 30 adantl A + m 1 A + 1 m
32 31 nnrecred A + m 1 A + 1 1 m
33 29 32 fsumrecl A + m = 1 A + 1 1 m
34 33 25 resubcld A + m = 1 A + 1 1 m log A + 1
35 harmonicbnd A + 1 m = 1 A + 1 1 m log A + 1 γ 1
36 22 35 syl A + m = 1 A + 1 1 m log A + 1 γ 1
37 1re 1
38 9 37 elicc2i m = 1 A + 1 1 m log A + 1 γ 1 m = 1 A + 1 1 m log A + 1 γ m = 1 A + 1 1 m log A + 1 m = 1 A + 1 1 m log A + 1 1
39 38 simp2bi m = 1 A + 1 1 m log A + 1 γ 1 γ m = 1 A + 1 1 m log A + 1
40 36 39 syl A + γ m = 1 A + 1 1 m log A + 1
41 rpre A + A
42 fllep1 A A A + 1
43 41 42 syl A + A A + 1
44 rpregt0 A + A 0 < A
45 22 nnred A + A + 1
46 22 nngt0d A + 0 < A + 1
47 lerec A 0 < A A + 1 0 < A + 1 A A + 1 1 A + 1 1 A
48 44 45 46 47 syl12anc A + A A + 1 1 A + 1 1 A
49 43 48 mpbid A + 1 A + 1 1 A
50 10 28 34 15 40 49 le2subd A + γ 1 A m = 1 A + 1 1 m - log A + 1 - 1 A + 1
51 33 recnd A + m = 1 A + 1 1 m
52 25 recnd A + log A + 1
53 28 recnd A + 1 A + 1
54 51 52 53 sub32d A + m = 1 A + 1 1 m - log A + 1 - 1 A + 1 = m = 1 A + 1 1 m - 1 A + 1 - log A + 1
55 nnuz = 1
56 22 55 eleqtrdi A + A + 1 1
57 32 recnd A + m 1 A + 1 1 m
58 oveq2 m = A + 1 1 m = 1 A + 1
59 56 57 58 fsumm1 A + m = 1 A + 1 1 m = m = 1 A + 1 - 1 1 m + 1 A + 1
60 20 nn0cnd A + A
61 ax-1cn 1
62 pncan A 1 A + 1 - 1 = A
63 60 61 62 sylancl A + A + 1 - 1 = A
64 63 oveq2d A + 1 A + 1 - 1 = 1 A
65 64 sumeq1d A + m = 1 A + 1 - 1 1 m = m = 1 A 1 m
66 65 oveq1d A + m = 1 A + 1 - 1 1 m + 1 A + 1 = m = 1 A 1 m + 1 A + 1
67 59 66 eqtrd A + m = 1 A + 1 1 m = m = 1 A 1 m + 1 A + 1
68 6 53 67 mvrraddd A + m = 1 A + 1 1 m 1 A + 1 = m = 1 A 1 m
69 68 oveq1d A + m = 1 A + 1 1 m - 1 A + 1 - log A + 1 = m = 1 A 1 m log A + 1
70 54 69 eqtrd A + m = 1 A + 1 1 m - log A + 1 - 1 A + 1 = m = 1 A 1 m log A + 1
71 50 70 breqtrd A + γ 1 A m = 1 A 1 m log A + 1
72 logleb A + A + 1 + A A + 1 log A log A + 1
73 23 72 mpdan A + A A + 1 log A log A + 1
74 43 73 mpbid A + log A log A + 1
75 7 25 5 74 lesub2dd A + m = 1 A 1 m log A + 1 m = 1 A 1 m log A
76 17 26 27 71 75 letrd A + γ 1 A m = 1 A 1 m log A
77 27 15 resubcld A + m = 1 A 1 m - log A - 1 A
78 15 recnd A + 1 A
79 6 8 78 subsub4d A + m = 1 A 1 m - log A - 1 A = m = 1 A 1 m log A + 1 A
80 7 15 readdcld A + log A + 1 A
81 id A + A +
82 23 81 relogdivd A + log A + 1 A = log A + 1 log A
83 rerpdivcl A + 1 A + A + 1 A
84 45 83 mpancom A + A + 1 A
85 37 a1i A + 1
86 85 15 readdcld A + 1 + 1 A
87 15 reefcld A + e 1 A
88 61 a1i A + 1
89 rpcnne0 A + A A 0
90 divdir A 1 A A 0 A + 1 A = A A + 1 A
91 60 88 89 90 syl3anc A + A + 1 A = A A + 1 A
92 reflcl A A
93 41 92 syl A + A
94 rerpdivcl A A + A A
95 93 94 mpancom A + A A
96 flle A A A
97 41 96 syl A + A A
98 rpcn A + A
99 98 mulid1d A + A 1 = A
100 97 99 breqtrrd A + A A 1
101 ledivmul A 1 A 0 < A A A 1 A A 1
102 93 85 44 101 syl3anc A + A A 1 A A 1
103 100 102 mpbird A + A A 1
104 95 85 15 103 leadd1dd A + A A + 1 A 1 + 1 A
105 91 104 eqbrtrd A + A + 1 A 1 + 1 A
106 efgt1p 1 A + 1 + 1 A < e 1 A
107 14 106 syl A + 1 + 1 A < e 1 A
108 86 87 107 ltled A + 1 + 1 A e 1 A
109 84 86 87 105 108 letrd A + A + 1 A e 1 A
110 rpdivcl A + 1 + A + A + 1 A +
111 23 110 mpancom A + A + 1 A +
112 15 rpefcld A + e 1 A +
113 111 112 logled A + A + 1 A e 1 A log A + 1 A log e 1 A
114 109 113 mpbid A + log A + 1 A log e 1 A
115 15 relogefd A + log e 1 A = 1 A
116 114 115 breqtrd A + log A + 1 A 1 A
117 82 116 eqbrtrrd A + log A + 1 log A 1 A
118 25 7 15 lesubadd2d A + log A + 1 log A 1 A log A + 1 log A + 1 A
119 117 118 mpbid A + log A + 1 log A + 1 A
120 25 80 5 119 lesub2dd A + m = 1 A 1 m log A + 1 A m = 1 A 1 m log A + 1
121 79 120 eqbrtrd A + m = 1 A 1 m - log A - 1 A m = 1 A 1 m log A + 1
122 harmonicbnd3 A 0 m = 1 A 1 m log A + 1 0 γ
123 20 122 syl A + m = 1 A 1 m log A + 1 0 γ
124 0re 0
125 124 9 elicc2i m = 1 A 1 m log A + 1 0 γ m = 1 A 1 m log A + 1 0 m = 1 A 1 m log A + 1 m = 1 A 1 m log A + 1 γ
126 125 simp3bi m = 1 A 1 m log A + 1 0 γ m = 1 A 1 m log A + 1 γ
127 123 126 syl A + m = 1 A 1 m log A + 1 γ
128 77 26 10 121 127 letrd A + m = 1 A 1 m - log A - 1 A γ
129 27 15 10 lesubaddd A + m = 1 A 1 m - log A - 1 A γ m = 1 A 1 m log A γ + 1 A
130 128 129 mpbid A + m = 1 A 1 m log A γ + 1 A
131 27 10 15 absdifled A + m = 1 A 1 m - log A - γ 1 A γ 1 A m = 1 A 1 m log A m = 1 A 1 m log A γ + 1 A
132 76 130 131 mpbir2and A + m = 1 A 1 m - log A - γ 1 A
133 13 132 eqbrtrrd A + m = 1 A 1 m log A + γ 1 A