Metamath Proof Explorer


Theorem harmoniclbnd

Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Assertion harmoniclbnd A + log A m = 1 A 1 m

Proof

Step Hyp Ref Expression
1 relogcl A + log A
2 rprege0 A + A 0 A
3 flge0nn0 A 0 A A 0
4 2 3 syl A + A 0
5 nn0p1nn A 0 A + 1
6 4 5 syl A + A + 1
7 6 nnrpd A + A + 1 +
8 relogcl A + 1 + log A + 1
9 7 8 syl A + log A + 1
10 fzfid A + 1 A Fin
11 elfznn m 1 A m
12 11 adantl A + m 1 A m
13 12 nnrecred A + m 1 A 1 m
14 10 13 fsumrecl A + m = 1 A 1 m
15 rpre A + A
16 fllep1 A A A + 1
17 15 16 syl A + A A + 1
18 id A + A +
19 18 7 logled A + A A + 1 log A log A + 1
20 17 19 mpbid A + log A log A + 1
21 harmonicbnd3 A 0 m = 1 A 1 m log A + 1 0 γ
22 4 21 syl A + m = 1 A 1 m log A + 1 0 γ
23 0re 0
24 emre γ
25 23 24 elicc2i m = 1 A 1 m log A + 1 0 γ m = 1 A 1 m log A + 1 0 m = 1 A 1 m log A + 1 m = 1 A 1 m log A + 1 γ
26 25 simp2bi m = 1 A 1 m log A + 1 0 γ 0 m = 1 A 1 m log A + 1
27 22 26 syl A + 0 m = 1 A 1 m log A + 1
28 14 9 subge0d A + 0 m = 1 A 1 m log A + 1 log A + 1 m = 1 A 1 m
29 27 28 mpbid A + log A + 1 m = 1 A 1 m
30 1 9 14 20 29 letrd A + log A m = 1 A 1 m