| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|
| 2 |
|
elfznn |
|
| 3 |
2
|
adantl |
|
| 4 |
3
|
nnrecred |
|
| 5 |
1 4
|
fsumrecl |
|
| 6 |
|
flge1nn |
|
| 7 |
6
|
nnrpd |
|
| 8 |
7
|
relogcld |
|
| 9 |
|
peano2re |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
simpl |
|
| 12 |
|
0red |
|
| 13 |
|
1re |
|
| 14 |
13
|
a1i |
|
| 15 |
|
0lt1 |
|
| 16 |
15
|
a1i |
|
| 17 |
|
simpr |
|
| 18 |
12 14 11 16 17
|
ltletrd |
|
| 19 |
11 18
|
elrpd |
|
| 20 |
19
|
relogcld |
|
| 21 |
|
peano2re |
|
| 22 |
20 21
|
syl |
|
| 23 |
|
harmonicbnd |
|
| 24 |
6 23
|
syl |
|
| 25 |
|
emre |
|
| 26 |
25 13
|
elicc2i |
|
| 27 |
26
|
simp3bi |
|
| 28 |
24 27
|
syl |
|
| 29 |
5 8 14
|
lesubadd2d |
|
| 30 |
28 29
|
mpbid |
|
| 31 |
|
flle |
|
| 32 |
31
|
adantr |
|
| 33 |
7 19
|
logled |
|
| 34 |
32 33
|
mpbid |
|
| 35 |
8 20 14 34
|
leadd1dd |
|
| 36 |
5 10 22 30 35
|
letrd |
|