Metamath Proof Explorer


Theorem harsucnn

Description: The next cardinal after a finite ordinal is the successor ordinal. (Contributed by RP, 5-Nov-2023)

Ref Expression
Assertion harsucnn A ω har A = suc A

Proof

Step Hyp Ref Expression
1 nnon A ω A On
2 onenon A On A dom card
3 harval2 A dom card har A = x On | A x
4 1 2 3 3syl A ω har A = x On | A x
5 sucdom A ω A x suc A x
6 5 adantr A ω x On A x suc A x
7 peano2 A ω suc A ω
8 nndomog suc A ω x On suc A x suc A x
9 7 8 sylan A ω x On suc A x suc A x
10 6 9 bitrd A ω x On A x suc A x
11 10 rabbidva A ω x On | A x = x On | suc A x
12 11 inteqd A ω x On | A x = x On | suc A x
13 nnon suc A ω suc A On
14 intmin suc A On x On | suc A x = suc A
15 7 13 14 3syl A ω x On | suc A x = suc A
16 4 12 15 3eqtrd A ω har A = suc A