Metamath Proof Explorer


Theorem hartogs

Description: The class of ordinals dominated by a given set is an ordinal. A shorter (when taking into account lemmas hartogslem1 and hartogslem2 ) proof can be given using the axiom of choice, see ondomon . As its label indicates, this result is used to justify the definition of the Hartogs function df-har . (Contributed by Jeff Hankins, 22-Oct-2009) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion hartogs A V x On | x A On

Proof

Step Hyp Ref Expression
1 onelon z On y z y On
2 vex z V
3 onelss z On y z y z
4 3 imp z On y z y z
5 ssdomg z V y z y z
6 2 4 5 mpsyl z On y z y z
7 1 6 jca z On y z y On y z
8 domtr y z z A y A
9 8 anim2i y On y z z A y On y A
10 9 anassrs y On y z z A y On y A
11 7 10 sylan z On y z z A y On y A
12 11 exp31 z On y z z A y On y A
13 12 com12 y z z On z A y On y A
14 13 impd y z z On z A y On y A
15 breq1 x = z x A z A
16 15 elrab z x On | x A z On z A
17 breq1 x = y x A y A
18 17 elrab y x On | x A y On y A
19 14 16 18 3imtr4g y z z x On | x A y x On | x A
20 19 imp y z z x On | x A y x On | x A
21 20 gen2 y z y z z x On | x A y x On | x A
22 dftr2 Tr x On | x A y z y z z x On | x A y x On | x A
23 21 22 mpbir Tr x On | x A
24 ssrab2 x On | x A On
25 ordon Ord On
26 trssord Tr x On | x A x On | x A On Ord On Ord x On | x A
27 23 24 25 26 mp3an Ord x On | x A
28 eqid r y | dom r A I dom r r r dom r × dom r r I We dom r y = dom OrdIso r I dom r = r y | dom r A I dom r r r dom r × dom r r I We dom r y = dom OrdIso r I dom r
29 eqid s t | w y z y s = g w t = g z w E z = s t | w y z y s = g w t = g z w E z
30 28 29 hartogslem2 A V x On | x A V
31 elong x On | x A V x On | x A On Ord x On | x A
32 30 31 syl A V x On | x A On Ord x On | x A
33 27 32 mpbiri A V x On | x A On