Metamath Proof Explorer


Theorem harval

Description: Function value of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion harval X V har X = y On | y X

Proof

Step Hyp Ref Expression
1 elex X V X V
2 breq2 x = X y x y X
3 2 rabbidv x = X y On | y x = y On | y X
4 df-har har = x V y On | y x
5 hartogs x V y On | y x On
6 3 4 5 fvmpt3 X V har X = y On | y X
7 1 6 syl X V har X = y On | y X