Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Hartogs function
harval
Next ⟩
elharval
Metamath Proof Explorer
Ascii
Unicode
Theorem
harval
Description:
Function value of the Hartogs function.
(Contributed by
Stefan O'Rear
, 11-Feb-2015)
Ref
Expression
Assertion
harval
⊢
X
∈
V
→
har
⁡
X
=
y
∈
On
|
y
≼
X
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
X
∈
V
→
X
∈
V
2
breq2
⊢
x
=
X
→
y
≼
x
↔
y
≼
X
3
2
rabbidv
⊢
x
=
X
→
y
∈
On
|
y
≼
x
=
y
∈
On
|
y
≼
X
4
df-har
⊢
har
=
x
∈
V
⟼
y
∈
On
|
y
≼
x
5
hartogs
⊢
x
∈
V
→
y
∈
On
|
y
≼
x
∈
On
6
3
4
5
fvmpt3
⊢
X
∈
V
→
har
⁡
X
=
y
∈
On
|
y
≼
X
7
1
6
syl
⊢
X
∈
V
→
har
⁡
X
=
y
∈
On
|
y
≼
X