Metamath Proof Explorer


Theorem harval2

Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion harval2 A dom card har A = x On | A x

Proof

Step Hyp Ref Expression
1 harval A dom card har A = y On | y A
2 1 adantr A dom card x On A x har A = y On | y A
3 sdomel y On x On y x y x
4 domsdomtr y A A x y x
5 3 4 impel y On x On y A A x y x
6 5 an4s y On y A x On A x y x
7 6 ancoms x On A x y On y A y x
8 7 3impb x On A x y On y A y x
9 8 rabssdv x On A x y On | y A x
10 9 adantl A dom card x On A x y On | y A x
11 2 10 eqsstrd A dom card x On A x har A x
12 11 expr A dom card x On A x har A x
13 12 ralrimiva A dom card x On A x har A x
14 ssintrab har A x On | A x x On A x har A x
15 13 14 sylibr A dom card har A x On | A x
16 breq2 x = har A A x A har A
17 harcl har A On
18 17 a1i A dom card har A On
19 harsdom A dom card A har A
20 16 18 19 elrabd A dom card har A x On | A x
21 intss1 har A x On | A x x On | A x har A
22 20 21 syl A dom card x On | A x har A
23 15 22 eqssd A dom card har A = x On | A x