Metamath Proof Explorer


Theorem hash1

Description: Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion hash1 1 𝑜 = 1

Proof

Step Hyp Ref Expression
1 peano1 ω
2 df-1o 1 𝑜 = suc
3 hash0 = 0
4 0p1e1 0 + 1 = 1
5 1 2 3 4 hashp1i 1 𝑜 = 1