Metamath Proof Explorer


Theorem hash1elsn

Description: A set of size 1 with a known element is the singleton of that element. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses hash1elsn.1 φ A = 1
hash1elsn.2 φ B A
hash1elsn.3 φ A V
Assertion hash1elsn φ A = B

Proof

Step Hyp Ref Expression
1 hash1elsn.1 φ A = 1
2 hash1elsn.2 φ B A
3 hash1elsn.3 φ A V
4 hashen1 A V A = 1 A 1 𝑜
5 3 4 syl φ A = 1 A 1 𝑜
6 1 5 mpbid φ A 1 𝑜
7 en1 A 1 𝑜 x A = x
8 6 7 sylib φ x A = x
9 simpr φ A = x A = x
10 2 adantr φ A = x B A
11 10 9 eleqtrd φ A = x B x
12 elsni B x B = x
13 11 12 syl φ A = x B = x
14 13 sneqd φ A = x B = x
15 9 14 eqtr4d φ A = x A = B
16 8 15 exlimddv φ A = B