Metamath Proof Explorer


Theorem hash1snb

Description: The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017)

Ref Expression
Assertion hash1snb V W V = 1 a V = a

Proof

Step Hyp Ref Expression
1 id V = 1 V = 1
2 hash1 1 𝑜 = 1
3 1 2 eqtr4di V = 1 V = 1 𝑜
4 3 adantl V Fin V = 1 V = 1 𝑜
5 1onn 1 𝑜 ω
6 nnfi 1 𝑜 ω 1 𝑜 Fin
7 5 6 mp1i V = 1 1 𝑜 Fin
8 hashen V Fin 1 𝑜 Fin V = 1 𝑜 V 1 𝑜
9 7 8 sylan2 V Fin V = 1 V = 1 𝑜 V 1 𝑜
10 4 9 mpbid V Fin V = 1 V 1 𝑜
11 en1 V 1 𝑜 a V = a
12 10 11 sylib V Fin V = 1 a V = a
13 12 ex V Fin V = 1 a V = a
14 13 a1d V Fin V W V = 1 a V = a
15 hashinf V W ¬ V Fin V = +∞
16 eqeq1 V = +∞ V = 1 +∞ = 1
17 1re 1
18 renepnf 1 1 +∞
19 df-ne 1 +∞ ¬ 1 = +∞
20 pm2.21 ¬ 1 = +∞ 1 = +∞ a V = a
21 19 20 sylbi 1 +∞ 1 = +∞ a V = a
22 17 18 21 mp2b 1 = +∞ a V = a
23 22 eqcoms +∞ = 1 a V = a
24 16 23 syl6bi V = +∞ V = 1 a V = a
25 15 24 syl V W ¬ V Fin V = 1 a V = a
26 25 expcom ¬ V Fin V W V = 1 a V = a
27 14 26 pm2.61i V W V = 1 a V = a
28 fveq2 V = a V = a
29 hashsng a V a = 1
30 29 elv a = 1
31 28 30 eqtrdi V = a V = 1
32 31 exlimiv a V = a V = 1
33 27 32 impbid1 V W V = 1 a V = a