Metamath Proof Explorer


Theorem hash1to3

Description: If the size of a set is between 1 and 3 (inclusively), the set is a singleton or an unordered pair or an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018)

Ref Expression
Assertion hash1to3 V Fin 1 V V 3 a b c V = a V = a b V = a b c

Proof

Step Hyp Ref Expression
1 hashcl V Fin V 0
2 nn01to3 V 0 1 V V 3 V = 1 V = 2 V = 3
3 1 2 syl3an1 V Fin 1 V V 3 V = 1 V = 2 V = 3
4 hash1snb V Fin V = 1 a V = a
5 4 biimpa V Fin V = 1 a V = a
6 3mix1 V = a V = a V = a b V = a b c
7 6 2eximi b c V = a b c V = a V = a b V = a b c
8 7 19.23bi c V = a b c V = a V = a b V = a b c
9 8 19.23bi V = a b c V = a V = a b V = a b c
10 9 eximi a V = a a b c V = a V = a b V = a b c
11 5 10 syl V Fin V = 1 a b c V = a V = a b V = a b c
12 11 expcom V = 1 V Fin a b c V = a V = a b V = a b c
13 hash2pr V Fin V = 2 a b V = a b
14 3mix2 V = a b V = a V = a b V = a b c
15 14 eximi c V = a b c V = a V = a b V = a b c
16 15 19.23bi V = a b c V = a V = a b V = a b c
17 16 2eximi a b V = a b a b c V = a V = a b V = a b c
18 13 17 syl V Fin V = 2 a b c V = a V = a b V = a b c
19 18 expcom V = 2 V Fin a b c V = a V = a b V = a b c
20 hash3tr V Fin V = 3 a b c V = a b c
21 3mix3 V = a b c V = a V = a b V = a b c
22 21 eximi c V = a b c c V = a V = a b V = a b c
23 22 2eximi a b c V = a b c a b c V = a V = a b V = a b c
24 20 23 syl V Fin V = 3 a b c V = a V = a b V = a b c
25 24 expcom V = 3 V Fin a b c V = a V = a b V = a b c
26 12 19 25 3jaoi V = 1 V = 2 V = 3 V Fin a b c V = a V = a b V = a b c
27 26 com12 V Fin V = 1 V = 2 V = 3 a b c V = a V = a b V = a b c
28 27 3ad2ant1 V Fin 1 V V 3 V = 1 V = 2 V = 3 a b c V = a V = a b V = a b c
29 3 28 mpd V Fin 1 V V 3 a b c V = a V = a b V = a b c