Metamath Proof Explorer


Theorem hash2

Description: Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion hash2 2 𝑜 = 2

Proof

Step Hyp Ref Expression
1 1onn 1 𝑜 ω
2 df-2o 2 𝑜 = suc 1 𝑜
3 hash1 1 𝑜 = 1
4 1p1e2 1 + 1 = 2
5 1 2 3 4 hashp1i 2 𝑜 = 2