Metamath Proof Explorer


Theorem hash2exprb

Description: A set of size two is an unordered pair if and only if it contains two different elements. (Contributed by Alexander van der Vekens, 14-Jan-2018)

Ref Expression
Assertion hash2exprb V W V = 2 a b a b V = a b

Proof

Step Hyp Ref Expression
1 hash2prde V W V = 2 a b a b V = a b
2 1 ex V W V = 2 a b a b V = a b
3 hashprg a V b V a b a b = 2
4 3 el2v a b a b = 2
5 4 a1i V = a b a b a b = 2
6 5 biimpd V = a b a b a b = 2
7 fveqeq2 V = a b V = 2 a b = 2
8 6 7 sylibrd V = a b a b V = 2
9 8 impcom a b V = a b V = 2
10 9 a1i V W a b V = a b V = 2
11 10 exlimdvv V W a b a b V = a b V = 2
12 2 11 impbid V W V = 2 a b a b V = a b