| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hash2iun1dif1.a |
|
| 2 |
|
hash2iun1dif1.b |
|
| 3 |
|
hash2iun1dif1.c |
|
| 4 |
|
hash2iun1dif1.da |
|
| 5 |
|
hash2iun1dif1.db |
|
| 6 |
|
hash2iun1dif1.1 |
|
| 7 |
|
diffi |
|
| 8 |
1 7
|
syl |
|
| 9 |
8
|
adantr |
|
| 10 |
2 9
|
eqeltrid |
|
| 11 |
1 10 3 4 5
|
hash2iun |
|
| 12 |
6
|
2sumeq2dv |
|
| 13 |
|
1cnd |
|
| 14 |
|
fsumconst |
|
| 15 |
10 13 14
|
syl2anc |
|
| 16 |
15
|
sumeq2dv |
|
| 17 |
2
|
a1i |
|
| 18 |
17
|
fveq2d |
|
| 19 |
|
hashdifsn |
|
| 20 |
1 19
|
sylan |
|
| 21 |
18 20
|
eqtrd |
|
| 22 |
21
|
oveq1d |
|
| 23 |
22
|
sumeq2dv |
|
| 24 |
|
hashcl |
|
| 25 |
1 24
|
syl |
|
| 26 |
25
|
nn0cnd |
|
| 27 |
|
peano2cnm |
|
| 28 |
26 27
|
syl |
|
| 29 |
28
|
mulridd |
|
| 30 |
29
|
sumeq2sdv |
|
| 31 |
|
fsumconst |
|
| 32 |
1 28 31
|
syl2anc |
|
| 33 |
30 32
|
eqtrd |
|
| 34 |
16 23 33
|
3eqtrd |
|
| 35 |
11 12 34
|
3eqtrd |
|