Step |
Hyp |
Ref |
Expression |
1 |
|
hash2iun1dif1.a |
|
2 |
|
hash2iun1dif1.b |
|
3 |
|
hash2iun1dif1.c |
|
4 |
|
hash2iun1dif1.da |
|
5 |
|
hash2iun1dif1.db |
|
6 |
|
hash2iun1dif1.1 |
|
7 |
|
diffi |
|
8 |
1 7
|
syl |
|
9 |
8
|
adantr |
|
10 |
2 9
|
eqeltrid |
|
11 |
1 10 3 4 5
|
hash2iun |
|
12 |
6
|
2sumeq2dv |
|
13 |
|
1cnd |
|
14 |
|
fsumconst |
|
15 |
10 13 14
|
syl2anc |
|
16 |
15
|
sumeq2dv |
|
17 |
2
|
a1i |
|
18 |
17
|
fveq2d |
|
19 |
|
hashdifsn |
|
20 |
1 19
|
sylan |
|
21 |
18 20
|
eqtrd |
|
22 |
21
|
oveq1d |
|
23 |
22
|
sumeq2dv |
|
24 |
|
hashcl |
|
25 |
1 24
|
syl |
|
26 |
25
|
nn0cnd |
|
27 |
|
peano2cnm |
|
28 |
26 27
|
syl |
|
29 |
28
|
mulid1d |
|
30 |
29
|
sumeq2sdv |
|
31 |
|
fsumconst |
|
32 |
1 28 31
|
syl2anc |
|
33 |
30 32
|
eqtrd |
|
34 |
16 23 33
|
3eqtrd |
|
35 |
11 12 34
|
3eqtrd |
|