Metamath Proof Explorer


Theorem hash2pr

Description: A set of size two is an unordered pair. (Contributed by Alexander van der Vekens, 8-Dec-2017)

Ref Expression
Assertion hash2pr V W V = 2 a b V = a b

Proof

Step Hyp Ref Expression
1 2nn0 2 0
2 hashvnfin V W 2 0 V = 2 V Fin
3 1 2 mpan2 V W V = 2 V Fin
4 3 imp V W V = 2 V Fin
5 hash2 2 𝑜 = 2
6 5 eqcomi 2 = 2 𝑜
7 6 a1i V Fin 2 = 2 𝑜
8 7 eqeq2d V Fin V = 2 V = 2 𝑜
9 2onn 2 𝑜 ω
10 nnfi 2 𝑜 ω 2 𝑜 Fin
11 9 10 ax-mp 2 𝑜 Fin
12 hashen V Fin 2 𝑜 Fin V = 2 𝑜 V 2 𝑜
13 11 12 mpan2 V Fin V = 2 𝑜 V 2 𝑜
14 13 biimpd V Fin V = 2 𝑜 V 2 𝑜
15 8 14 sylbid V Fin V = 2 V 2 𝑜
16 15 adantld V Fin V W V = 2 V 2 𝑜
17 4 16 mpcom V W V = 2 V 2 𝑜
18 en2 V 2 𝑜 a b V = a b
19 17 18 syl V W V = 2 a b V = a b