Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
Proper unordered pairs and triples (sets of size 2 and 3)
hash2prb
Next ⟩
prprrab
Metamath Proof Explorer
Ascii
Unicode
Theorem
hash2prb
Description:
A set of size two is a proper unordered pair.
(Contributed by
AV
, 1-Nov-2020)
Ref
Expression
Assertion
hash2prb
⊢
V
∈
W
→
V
=
2
↔
∃
a
∈
V
∃
b
∈
V
a
≠
b
∧
V
=
a
b
Proof
Step
Hyp
Ref
Expression
1
hash2exprb
⊢
V
∈
W
→
V
=
2
↔
∃
a
∃
b
a
≠
b
∧
V
=
a
b
2
vex
⊢
a
∈
V
3
2
prid1
⊢
a
∈
a
b
4
vex
⊢
b
∈
V
5
4
prid2
⊢
b
∈
a
b
6
3
5
pm3.2i
⊢
a
∈
a
b
∧
b
∈
a
b
7
eleq2
⊢
V
=
a
b
→
a
∈
V
↔
a
∈
a
b
8
eleq2
⊢
V
=
a
b
→
b
∈
V
↔
b
∈
a
b
9
7
8
anbi12d
⊢
V
=
a
b
→
a
∈
V
∧
b
∈
V
↔
a
∈
a
b
∧
b
∈
a
b
10
6
9
mpbiri
⊢
V
=
a
b
→
a
∈
V
∧
b
∈
V
11
10
adantl
⊢
a
≠
b
∧
V
=
a
b
→
a
∈
V
∧
b
∈
V
12
11
pm4.71ri
⊢
a
≠
b
∧
V
=
a
b
↔
a
∈
V
∧
b
∈
V
∧
a
≠
b
∧
V
=
a
b
13
12
2exbii
⊢
∃
a
∃
b
a
≠
b
∧
V
=
a
b
↔
∃
a
∃
b
a
∈
V
∧
b
∈
V
∧
a
≠
b
∧
V
=
a
b
14
13
a1i
⊢
V
∈
W
→
∃
a
∃
b
a
≠
b
∧
V
=
a
b
↔
∃
a
∃
b
a
∈
V
∧
b
∈
V
∧
a
≠
b
∧
V
=
a
b
15
r2ex
⊢
∃
a
∈
V
∃
b
∈
V
a
≠
b
∧
V
=
a
b
↔
∃
a
∃
b
a
∈
V
∧
b
∈
V
∧
a
≠
b
∧
V
=
a
b
16
15
bicomi
⊢
∃
a
∃
b
a
∈
V
∧
b
∈
V
∧
a
≠
b
∧
V
=
a
b
↔
∃
a
∈
V
∃
b
∈
V
a
≠
b
∧
V
=
a
b
17
16
a1i
⊢
V
∈
W
→
∃
a
∃
b
a
∈
V
∧
b
∈
V
∧
a
≠
b
∧
V
=
a
b
↔
∃
a
∈
V
∃
b
∈
V
a
≠
b
∧
V
=
a
b
18
1
14
17
3bitrd
⊢
V
∈
W
→
V
=
2
↔
∃
a
∈
V
∃
b
∈
V
a
≠
b
∧
V
=
a
b