Metamath Proof Explorer


Theorem hash2prb

Description: A set of size two is a proper unordered pair. (Contributed by AV, 1-Nov-2020)

Ref Expression
Assertion hash2prb V W V = 2 a V b V a b V = a b

Proof

Step Hyp Ref Expression
1 hash2exprb V W V = 2 a b a b V = a b
2 vex a V
3 2 prid1 a a b
4 vex b V
5 4 prid2 b a b
6 3 5 pm3.2i a a b b a b
7 eleq2 V = a b a V a a b
8 eleq2 V = a b b V b a b
9 7 8 anbi12d V = a b a V b V a a b b a b
10 6 9 mpbiri V = a b a V b V
11 10 adantl a b V = a b a V b V
12 11 pm4.71ri a b V = a b a V b V a b V = a b
13 12 2exbii a b a b V = a b a b a V b V a b V = a b
14 13 a1i V W a b a b V = a b a b a V b V a b V = a b
15 r2ex a V b V a b V = a b a b a V b V a b V = a b
16 15 bicomi a b a V b V a b V = a b a V b V a b V = a b
17 16 a1i V W a b a V b V a b V = a b a V b V a b V = a b
18 1 14 17 3bitrd V W V = 2 a V b V a b V = a b