Metamath Proof Explorer


Theorem hash2pwpr

Description: If the size of a subset of an unordered pair is 2, the subset is the pair itself. (Contributed by Alexander van der Vekens, 9-Dec-2018)

Ref Expression
Assertion hash2pwpr P = 2 P 𝒫 X Y P = X Y

Proof

Step Hyp Ref Expression
1 pwpr 𝒫 X Y = X Y X Y
2 1 eleq2i P 𝒫 X Y P X Y X Y
3 elun P X Y X Y P X P Y X Y
4 2 3 bitri P 𝒫 X Y P X P Y X Y
5 fveq2 P = P =
6 hash0 = 0
7 6 eqeq2i P = P = 0
8 eqeq1 P = 0 P = 2 0 = 2
9 0ne2 0 2
10 eqneqall 0 = 2 0 2 P = X Y
11 9 10 mpi 0 = 2 P = X Y
12 8 11 syl6bi P = 0 P = 2 P = X Y
13 7 12 sylbi P = P = 2 P = X Y
14 5 13 syl P = P = 2 P = X Y
15 hashsng X V X = 1
16 fveq2 X = P X = P
17 16 eqcoms P = X X = P
18 17 eqeq1d P = X X = 1 P = 1
19 eqeq1 P = 1 P = 2 1 = 2
20 1ne2 1 2
21 eqneqall 1 = 2 1 2 P = X Y
22 20 21 mpi 1 = 2 P = X Y
23 19 22 syl6bi P = 1 P = 2 P = X Y
24 18 23 syl6bi P = X X = 1 P = 2 P = X Y
25 15 24 syl5com X V P = X P = 2 P = X Y
26 snprc ¬ X V X =
27 eqeq2 X = P = X P =
28 5 6 eqtrdi P = P = 0
29 28 eqeq1d P = P = 2 0 = 2
30 29 11 syl6bi P = P = 2 P = X Y
31 27 30 syl6bi X = P = X P = 2 P = X Y
32 26 31 sylbi ¬ X V P = X P = 2 P = X Y
33 25 32 pm2.61i P = X P = 2 P = X Y
34 14 33 jaoi P = P = X P = 2 P = X Y
35 hashsng Y V Y = 1
36 fveq2 Y = P Y = P
37 36 eqcoms P = Y Y = P
38 37 eqeq1d P = Y Y = 1 P = 1
39 38 23 syl6bi P = Y Y = 1 P = 2 P = X Y
40 35 39 syl5com Y V P = Y P = 2 P = X Y
41 snprc ¬ Y V Y =
42 eqeq2 Y = P = Y P =
43 5 eqeq1d P = P = 2 = 2
44 6 eqeq1i = 2 0 = 2
45 44 11 sylbi = 2 P = X Y
46 43 45 syl6bi P = P = 2 P = X Y
47 42 46 syl6bi Y = P = Y P = 2 P = X Y
48 41 47 sylbi ¬ Y V P = Y P = 2 P = X Y
49 40 48 pm2.61i P = Y P = 2 P = X Y
50 ax-1 P = X Y P = 2 P = X Y
51 49 50 jaoi P = Y P = X Y P = 2 P = X Y
52 34 51 jaoi P = P = X P = Y P = X Y P = 2 P = X Y
53 elpri P X P = P = X
54 elpri P Y X Y P = Y P = X Y
55 53 54 orim12i P X P Y X Y P = P = X P = Y P = X Y
56 52 55 syl11 P = 2 P X P Y X Y P = X Y
57 4 56 syl5bi P = 2 P 𝒫 X Y P = X Y
58 57 imp P = 2 P 𝒫 X Y P = X Y