Metamath Proof Explorer


Theorem hash2sspr

Description: A subset of size two is an unordered pair of elements of its superset. (Contributed by Alexander van der Vekens, 12-Jul-2017) (Proof shortened by AV, 4-Nov-2020)

Ref Expression
Assertion hash2sspr P 𝒫 V P = 2 a V b V P = a b

Proof

Step Hyp Ref Expression
1 fveqeq2 p = P p = 2 P = 2
2 1 elrab P p 𝒫 V | p = 2 P 𝒫 V P = 2
3 elss2prb P p 𝒫 V | p = 2 a V b V a b P = a b
4 simpr a b P = a b P = a b
5 4 reximi b V a b P = a b b V P = a b
6 5 reximi a V b V a b P = a b a V b V P = a b
7 3 6 sylbi P p 𝒫 V | p = 2 a V b V P = a b
8 2 7 sylbir P 𝒫 V P = 2 a V b V P = a b