Metamath Proof Explorer


Theorem hash3tpb

Description: A set of size three is a proper unordered triple. (Contributed by AV, 21-Jul-2025)

Ref Expression
Assertion hash3tpb V W V = 3 a V b V c V a b a c b c V = a b c

Proof

Step Hyp Ref Expression
1 hash3tpexb V W V = 3 a b c a b a c b c V = a b c
2 vex a V
3 2 tpid1 a a b c
4 vex b V
5 4 tpid2 b a b c
6 vex c V
7 6 tpid3 c a b c
8 3 5 7 3pm3.2i a a b c b a b c c a b c
9 eleq2 V = a b c a V a a b c
10 eleq2 V = a b c b V b a b c
11 eleq2 V = a b c c V c a b c
12 9 10 11 3anbi123d V = a b c a V b V c V a a b c b a b c c a b c
13 8 12 mpbiri V = a b c a V b V c V
14 13 adantl a b a c b c V = a b c a V b V c V
15 14 pm4.71ri a b a c b c V = a b c a V b V c V a b a c b c V = a b c
16 15 3exbii a b c a b a c b c V = a b c a b c a V b V c V a b a c b c V = a b c
17 16 a1i V W a b c a b a c b c V = a b c a b c a V b V c V a b a c b c V = a b c
18 r3ex a V b V c V a b a c b c V = a b c a b c a V b V c V a b a c b c V = a b c
19 18 bicomi a b c a V b V c V a b a c b c V = a b c a V b V c V a b a c b c V = a b c
20 19 a1i V W a b c a V b V c V a b a c b c V = a b c a V b V c V a b a c b c V = a b c
21 1 17 20 3bitrd V W V = 3 a V b V c V a b a c b c V = a b c