Step |
Hyp |
Ref |
Expression |
1 |
|
hash3tr |
|
2 |
|
ax-1 |
|
3 |
|
3ianor |
|
4 |
|
nne |
|
5 |
|
nne |
|
6 |
|
nne |
|
7 |
4 5 6
|
3orbi123i |
|
8 |
3 7
|
bitri |
|
9 |
|
tpeq1 |
|
10 |
|
tpidm12 |
|
11 |
9 10
|
eqtrdi |
|
12 |
11
|
eqeq2d |
|
13 |
|
fveqeq2 |
|
14 |
|
hashprlei |
|
15 |
|
breq1 |
|
16 |
|
2lt3 |
|
17 |
|
2re |
|
18 |
|
3re |
|
19 |
17 18
|
ltnlei |
|
20 |
16 19
|
mpbi |
|
21 |
20
|
pm2.21i |
|
22 |
15 21
|
biimtrdi |
|
23 |
22
|
com12 |
|
24 |
23
|
adantl |
|
25 |
14 24
|
ax-mp |
|
26 |
13 25
|
biimtrdi |
|
27 |
26
|
adantld |
|
28 |
12 27
|
biimtrdi |
|
29 |
|
tpeq1 |
|
30 |
|
tpidm13 |
|
31 |
29 30
|
eqtrdi |
|
32 |
31
|
eqeq2d |
|
33 |
|
fveqeq2 |
|
34 |
|
hashprlei |
|
35 |
|
breq1 |
|
36 |
35 21
|
biimtrdi |
|
37 |
36
|
com12 |
|
38 |
37
|
adantl |
|
39 |
34 38
|
ax-mp |
|
40 |
33 39
|
biimtrdi |
|
41 |
40
|
adantld |
|
42 |
32 41
|
biimtrdi |
|
43 |
|
tpeq2 |
|
44 |
|
tpidm23 |
|
45 |
43 44
|
eqtrdi |
|
46 |
45
|
eqeq2d |
|
47 |
|
fveqeq2 |
|
48 |
|
hashprlei |
|
49 |
|
breq1 |
|
50 |
49 21
|
biimtrdi |
|
51 |
50
|
com12 |
|
52 |
51
|
adantl |
|
53 |
48 52
|
ax-mp |
|
54 |
47 53
|
biimtrdi |
|
55 |
54
|
adantld |
|
56 |
46 55
|
biimtrdi |
|
57 |
28 42 56
|
3jaoi |
|
58 |
57
|
impcomd |
|
59 |
8 58
|
sylbi |
|
60 |
2 59
|
pm2.61i |
|
61 |
|
simpr |
|
62 |
60 61
|
jca |
|
63 |
62
|
ex |
|
64 |
63
|
eximdv |
|
65 |
64
|
2eximdv |
|
66 |
1 65
|
mpd |
|