Metamath Proof Explorer


Theorem hash3tpexb

Description: A set of size three is an unordered triple if and only if it contains three different elements. (Contributed by AV, 21-Jul-2025)

Ref Expression
Assertion hash3tpexb V W V = 3 a b c a b a c b c V = a b c

Proof

Step Hyp Ref Expression
1 hash3tpde V W V = 3 a b c a b a c b c V = a b c
2 1 ex V W V = 3 a b c a b a c b c V = a b c
3 fveq2 V = a b c V = a b c
4 df-tp a b c = a b c
5 4 a1i a b a c b c a b c = a b c
6 5 fveq2d a b a c b c a b c = a b c
7 prfi a b Fin
8 snfi c Fin
9 disjprsn a c b c a b c =
10 9 3adant1 a b a c b c a b c =
11 hashun a b Fin c Fin a b c = a b c = a b + c
12 7 8 10 11 mp3an12i a b a c b c a b c = a b + c
13 hashprg a V b V a b a b = 2
14 13 el2v a b a b = 2
15 14 biimpi a b a b = 2
16 15 3ad2ant1 a b a c b c a b = 2
17 hashsng c V c = 1
18 17 elv c = 1
19 18 a1i a b a c b c c = 1
20 16 19 oveq12d a b a c b c a b + c = 2 + 1
21 2p1e3 2 + 1 = 3
22 20 21 eqtrdi a b a c b c a b + c = 3
23 6 12 22 3eqtrd a b a c b c a b c = 3
24 3 23 sylan9eqr a b a c b c V = a b c V = 3
25 24 a1i V W a b a c b c V = a b c V = 3
26 25 exlimdv V W c a b a c b c V = a b c V = 3
27 26 exlimdvv V W a b c a b a c b c V = a b c V = 3
28 2 27 impbid V W V = 3 a b c a b a c b c V = a b c