Metamath Proof Explorer


Theorem hash3tr

Description: A set of size three is an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018)

Ref Expression
Assertion hash3tr V W V = 3 a b c V = a b c

Proof

Step Hyp Ref Expression
1 3nn0 3 0
2 hashvnfin V W 3 0 V = 3 V Fin
3 1 2 mpan2 V W V = 3 V Fin
4 3 imp V W V = 3 V Fin
5 hash3 3 𝑜 = 3
6 5 eqcomi 3 = 3 𝑜
7 6 a1i V Fin 3 = 3 𝑜
8 7 eqeq2d V Fin V = 3 V = 3 𝑜
9 3onn 3 𝑜 ω
10 nnfi 3 𝑜 ω 3 𝑜 Fin
11 9 10 ax-mp 3 𝑜 Fin
12 hashen V Fin 3 𝑜 Fin V = 3 𝑜 V 3 𝑜
13 11 12 mpan2 V Fin V = 3 𝑜 V 3 𝑜
14 13 biimpd V Fin V = 3 𝑜 V 3 𝑜
15 8 14 sylbid V Fin V = 3 V 3 𝑜
16 15 adantld V Fin V W V = 3 V 3 𝑜
17 4 16 mpcom V W V = 3 V 3 𝑜
18 en3 V 3 𝑜 a b c V = a b c
19 17 18 syl V W V = 3 a b c V = a b c