Metamath Proof Explorer


Theorem hashbc

Description: The binomial coefficient counts the number of subsets of a finite set of a given size. This is Metamath 100 proof #58 (formula for the number of combinations). (Contributed by Mario Carneiro, 13-Jul-2014)

Ref Expression
Assertion hashbc A Fin K ( A K) = x 𝒫 A | x = K

Proof

Step Hyp Ref Expression
1 fveq2 w = w =
2 1 oveq1d w = ( w k) = ( k)
3 pweq w = 𝒫 w = 𝒫
4 3 rabeqdv w = x 𝒫 w | x = k = x 𝒫 | x = k
5 4 fveq2d w = x 𝒫 w | x = k = x 𝒫 | x = k
6 2 5 eqeq12d w = ( w k) = x 𝒫 w | x = k ( k) = x 𝒫 | x = k
7 6 ralbidv w = k ( w k) = x 𝒫 w | x = k k ( k) = x 𝒫 | x = k
8 fveq2 w = y w = y
9 8 oveq1d w = y ( w k) = ( y k)
10 pweq w = y 𝒫 w = 𝒫 y
11 10 rabeqdv w = y x 𝒫 w | x = k = x 𝒫 y | x = k
12 11 fveq2d w = y x 𝒫 w | x = k = x 𝒫 y | x = k
13 9 12 eqeq12d w = y ( w k) = x 𝒫 w | x = k ( y k) = x 𝒫 y | x = k
14 13 ralbidv w = y k ( w k) = x 𝒫 w | x = k k ( y k) = x 𝒫 y | x = k
15 fveq2 w = y z w = y z
16 15 oveq1d w = y z ( w k) = ( y z k)
17 pweq w = y z 𝒫 w = 𝒫 y z
18 17 rabeqdv w = y z x 𝒫 w | x = k = x 𝒫 y z | x = k
19 18 fveq2d w = y z x 𝒫 w | x = k = x 𝒫 y z | x = k
20 16 19 eqeq12d w = y z ( w k) = x 𝒫 w | x = k ( y z k) = x 𝒫 y z | x = k
21 20 ralbidv w = y z k ( w k) = x 𝒫 w | x = k k ( y z k) = x 𝒫 y z | x = k
22 fveq2 w = A w = A
23 22 oveq1d w = A ( w k) = ( A k)
24 pweq w = A 𝒫 w = 𝒫 A
25 24 rabeqdv w = A x 𝒫 w | x = k = x 𝒫 A | x = k
26 25 fveq2d w = A x 𝒫 w | x = k = x 𝒫 A | x = k
27 23 26 eqeq12d w = A ( w k) = x 𝒫 w | x = k ( A k) = x 𝒫 A | x = k
28 27 ralbidv w = A k ( w k) = x 𝒫 w | x = k k ( A k) = x 𝒫 A | x = k
29 hash0 = 0
30 29 a1i k 0 0 = 0
31 elfz1eq k 0 0 k = 0
32 30 31 oveq12d k 0 0 ( k) = ( 0 0 )
33 0nn0 0 0
34 bcn0 0 0 ( 0 0 ) = 1
35 33 34 ax-mp ( 0 0 ) = 1
36 32 35 eqtrdi k 0 0 ( k) = 1
37 pw0 𝒫 =
38 31 eqcomd k 0 0 0 = k
39 37 raleqi x 𝒫 x = k x x = k
40 0ex V
41 fveq2 x = x =
42 41 29 eqtrdi x = x = 0
43 42 eqeq1d x = x = k 0 = k
44 40 43 ralsn x x = k 0 = k
45 39 44 bitri x 𝒫 x = k 0 = k
46 38 45 sylibr k 0 0 x 𝒫 x = k
47 rabid2 𝒫 = x 𝒫 | x = k x 𝒫 x = k
48 46 47 sylibr k 0 0 𝒫 = x 𝒫 | x = k
49 37 48 syl5reqr k 0 0 x 𝒫 | x = k =
50 49 fveq2d k 0 0 x 𝒫 | x = k =
51 hashsng V = 1
52 40 51 ax-mp = 1
53 50 52 eqtrdi k 0 0 x 𝒫 | x = k = 1
54 36 53 eqtr4d k 0 0 ( k) = x 𝒫 | x = k
55 54 adantl k k 0 0 ( k) = x 𝒫 | x = k
56 29 oveq1i ( k) = ( 0 k)
57 bcval3 0 0 k ¬ k 0 0 ( 0 k) = 0
58 33 57 mp3an1 k ¬ k 0 0 ( 0 k) = 0
59 id 0 = k 0 = k
60 0z 0
61 elfz3 0 0 0 0
62 60 61 ax-mp 0 0 0
63 59 62 eqeltrrdi 0 = k k 0 0
64 63 con3i ¬ k 0 0 ¬ 0 = k
65 64 adantl k ¬ k 0 0 ¬ 0 = k
66 37 raleqi x 𝒫 ¬ x = k x ¬ x = k
67 43 notbid x = ¬ x = k ¬ 0 = k
68 40 67 ralsn x ¬ x = k ¬ 0 = k
69 66 68 bitri x 𝒫 ¬ x = k ¬ 0 = k
70 65 69 sylibr k ¬ k 0 0 x 𝒫 ¬ x = k
71 rabeq0 x 𝒫 | x = k = x 𝒫 ¬ x = k
72 70 71 sylibr k ¬ k 0 0 x 𝒫 | x = k =
73 72 fveq2d k ¬ k 0 0 x 𝒫 | x = k =
74 73 29 eqtrdi k ¬ k 0 0 x 𝒫 | x = k = 0
75 58 74 eqtr4d k ¬ k 0 0 ( 0 k) = x 𝒫 | x = k
76 56 75 syl5eq k ¬ k 0 0 ( k) = x 𝒫 | x = k
77 55 76 pm2.61dan k ( k) = x 𝒫 | x = k
78 77 rgen k ( k) = x 𝒫 | x = k
79 oveq2 k = j ( y k) = ( y j)
80 eqeq2 k = j x = k x = j
81 80 rabbidv k = j x 𝒫 y | x = k = x 𝒫 y | x = j
82 fveqeq2 x = z x = j z = j
83 82 cbvrabv x 𝒫 y | x = j = z 𝒫 y | z = j
84 81 83 eqtrdi k = j x 𝒫 y | x = k = z 𝒫 y | z = j
85 84 fveq2d k = j x 𝒫 y | x = k = z 𝒫 y | z = j
86 79 85 eqeq12d k = j ( y k) = x 𝒫 y | x = k ( y j) = z 𝒫 y | z = j
87 86 cbvralvw k ( y k) = x 𝒫 y | x = k j ( y j) = z 𝒫 y | z = j
88 simpll y Fin ¬ z y k j ( y j) = z 𝒫 y | z = j y Fin
89 simplr y Fin ¬ z y k j ( y j) = z 𝒫 y | z = j ¬ z y
90 simprr y Fin ¬ z y k j ( y j) = z 𝒫 y | z = j j ( y j) = z 𝒫 y | z = j
91 83 fveq2i x 𝒫 y | x = j = z 𝒫 y | z = j
92 91 eqeq2i ( y j) = x 𝒫 y | x = j ( y j) = z 𝒫 y | z = j
93 92 ralbii j ( y j) = x 𝒫 y | x = j j ( y j) = z 𝒫 y | z = j
94 90 93 sylibr y Fin ¬ z y k j ( y j) = z 𝒫 y | z = j j ( y j) = x 𝒫 y | x = j
95 simprl y Fin ¬ z y k j ( y j) = z 𝒫 y | z = j k
96 88 89 94 95 hashbclem y Fin ¬ z y k j ( y j) = z 𝒫 y | z = j ( y z k) = x 𝒫 y z | x = k
97 96 expr y Fin ¬ z y k j ( y j) = z 𝒫 y | z = j ( y z k) = x 𝒫 y z | x = k
98 97 ralrimdva y Fin ¬ z y j ( y j) = z 𝒫 y | z = j k ( y z k) = x 𝒫 y z | x = k
99 87 98 syl5bi y Fin ¬ z y k ( y k) = x 𝒫 y | x = k k ( y z k) = x 𝒫 y z | x = k
100 7 14 21 28 78 99 findcard2s A Fin k ( A k) = x 𝒫 A | x = k
101 oveq2 k = K ( A k) = ( A K)
102 eqeq2 k = K x = k x = K
103 102 rabbidv k = K x 𝒫 A | x = k = x 𝒫 A | x = K
104 103 fveq2d k = K x 𝒫 A | x = k = x 𝒫 A | x = K
105 101 104 eqeq12d k = K ( A k) = x 𝒫 A | x = k ( A K) = x 𝒫 A | x = K
106 105 rspccva k ( A k) = x 𝒫 A | x = k K ( A K) = x 𝒫 A | x = K
107 100 106 sylan A Fin K ( A K) = x 𝒫 A | x = K