Metamath Proof Explorer


Theorem hashbc0

Description: The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypothesis ramval.c C = a V , i 0 b 𝒫 a | b = i
Assertion hashbc0 A V A C 0 =

Proof

Step Hyp Ref Expression
1 ramval.c C = a V , i 0 b 𝒫 a | b = i
2 0nn0 0 0
3 1 hashbcval A V 0 0 A C 0 = x 𝒫 A | x = 0
4 2 3 mpan2 A V A C 0 = x 𝒫 A | x = 0
5 hasheq0 x V x = 0 x =
6 5 elv x = 0 x =
7 6 anbi2i x 𝒫 A x = 0 x 𝒫 A x =
8 id x = x =
9 0elpw 𝒫 A
10 8 9 eqeltrdi x = x 𝒫 A
11 10 pm4.71ri x = x 𝒫 A x =
12 7 11 bitr4i x 𝒫 A x = 0 x =
13 12 abbii x | x 𝒫 A x = 0 = x | x =
14 df-rab x 𝒫 A | x = 0 = x | x 𝒫 A x = 0
15 df-sn = x | x =
16 13 14 15 3eqtr4i x 𝒫 A | x = 0 =
17 4 16 eqtrdi A V A C 0 =