Metamath Proof Explorer


Theorem hashbc2

Description: The size of the binomial set is the binomial coefficient. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis ramval.c C = a V , i 0 b 𝒫 a | b = i
Assertion hashbc2 A Fin N 0 A C N = ( A N)

Proof

Step Hyp Ref Expression
1 ramval.c C = a V , i 0 b 𝒫 a | b = i
2 1 hashbcval A Fin N 0 A C N = x 𝒫 A | x = N
3 2 fveq2d A Fin N 0 A C N = x 𝒫 A | x = N
4 nn0z N 0 N
5 hashbc A Fin N ( A N) = x 𝒫 A | x = N
6 4 5 sylan2 A Fin N 0 ( A N) = x 𝒫 A | x = N
7 3 6 eqtr4d A Fin N 0 A C N = ( A N)