Metamath Proof Explorer


Theorem hashbccl

Description: The binomial set is a finite set. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis ramval.c C = a V , i 0 b 𝒫 a | b = i
Assertion hashbccl A Fin N 0 A C N Fin

Proof

Step Hyp Ref Expression
1 ramval.c C = a V , i 0 b 𝒫 a | b = i
2 1 hashbcval A Fin N 0 A C N = x 𝒫 A | x = N
3 simpl A Fin N 0 A Fin
4 pwfi A Fin 𝒫 A Fin
5 3 4 sylib A Fin N 0 𝒫 A Fin
6 ssrab2 x 𝒫 A | x = N 𝒫 A
7 ssfi 𝒫 A Fin x 𝒫 A | x = N 𝒫 A x 𝒫 A | x = N Fin
8 5 6 7 sylancl A Fin N 0 x 𝒫 A | x = N Fin
9 2 8 eqeltrd A Fin N 0 A C N Fin