Metamath Proof Explorer


Theorem hashbclem

Description: Lemma for hashbc : inductive step. (Contributed by Mario Carneiro, 13-Jul-2014)

Ref Expression
Hypotheses hashbc.1 φ A Fin
hashbc.2 φ ¬ z A
hashbc.3 φ j ( A j) = x 𝒫 A | x = j
hashbc.4 φ K
Assertion hashbclem φ ( A z K) = x 𝒫 A z | x = K

Proof

Step Hyp Ref Expression
1 hashbc.1 φ A Fin
2 hashbc.2 φ ¬ z A
3 hashbc.3 φ j ( A j) = x 𝒫 A | x = j
4 hashbc.4 φ K
5 oveq2 j = K ( A j) = ( A K)
6 eqeq2 j = K x = j x = K
7 6 rabbidv j = K x 𝒫 A | x = j = x 𝒫 A | x = K
8 7 fveq2d j = K x 𝒫 A | x = j = x 𝒫 A | x = K
9 5 8 eqeq12d j = K ( A j) = x 𝒫 A | x = j ( A K) = x 𝒫 A | x = K
10 9 3 4 rspcdva φ ( A K) = x 𝒫 A | x = K
11 ssun1 A A z
12 11 sspwi 𝒫 A 𝒫 A z
13 12 sseli x 𝒫 A x 𝒫 A z
14 13 adantl φ x 𝒫 A x 𝒫 A z
15 elpwi x 𝒫 A x A
16 15 ssneld x 𝒫 A ¬ z A ¬ z x
17 2 16 mpan9 φ x 𝒫 A ¬ z x
18 14 17 jca φ x 𝒫 A x 𝒫 A z ¬ z x
19 elpwi x 𝒫 A z x A z
20 uncom A z = z A
21 19 20 sseqtrdi x 𝒫 A z x z A
22 21 adantr x 𝒫 A z ¬ z x x z A
23 simpr x 𝒫 A z ¬ z x ¬ z x
24 disjsn x z = ¬ z x
25 23 24 sylibr x 𝒫 A z ¬ z x x z =
26 disjssun x z = x z A x A
27 25 26 syl x 𝒫 A z ¬ z x x z A x A
28 22 27 mpbid x 𝒫 A z ¬ z x x A
29 vex x V
30 29 elpw x 𝒫 A x A
31 28 30 sylibr x 𝒫 A z ¬ z x x 𝒫 A
32 31 adantl φ x 𝒫 A z ¬ z x x 𝒫 A
33 18 32 impbida φ x 𝒫 A x 𝒫 A z ¬ z x
34 33 anbi1d φ x 𝒫 A x = K x 𝒫 A z ¬ z x x = K
35 anass x 𝒫 A z ¬ z x x = K x 𝒫 A z ¬ z x x = K
36 34 35 syl6bb φ x 𝒫 A x = K x 𝒫 A z ¬ z x x = K
37 36 rabbidva2 φ x 𝒫 A | x = K = x 𝒫 A z | ¬ z x x = K
38 37 fveq2d φ x 𝒫 A | x = K = x 𝒫 A z | ¬ z x x = K
39 10 38 eqtrd φ ( A K) = x 𝒫 A z | ¬ z x x = K
40 oveq2 j = K 1 ( A j) = ( A K 1 )
41 eqeq2 j = K 1 x = j x = K 1
42 41 rabbidv j = K 1 x 𝒫 A | x = j = x 𝒫 A | x = K 1
43 42 fveq2d j = K 1 x 𝒫 A | x = j = x 𝒫 A | x = K 1
44 40 43 eqeq12d j = K 1 ( A j) = x 𝒫 A | x = j ( A K 1 ) = x 𝒫 A | x = K 1
45 peano2zm K K 1
46 4 45 syl φ K 1
47 44 3 46 rspcdva φ ( A K 1 ) = x 𝒫 A | x = K 1
48 pwfi A Fin 𝒫 A Fin
49 1 48 sylib φ 𝒫 A Fin
50 rabexg 𝒫 A Fin x 𝒫 A | x = K 1 V
51 49 50 syl φ x 𝒫 A | x = K 1 V
52 snfi z Fin
53 unfi A Fin z Fin A z Fin
54 1 52 53 sylancl φ A z Fin
55 pwfi A z Fin 𝒫 A z Fin
56 54 55 sylib φ 𝒫 A z Fin
57 ssrab2 x 𝒫 A z | z x x = K 𝒫 A z
58 ssfi 𝒫 A z Fin x 𝒫 A z | z x x = K 𝒫 A z x 𝒫 A z | z x x = K Fin
59 56 57 58 sylancl φ x 𝒫 A z | z x x = K Fin
60 59 elexd φ x 𝒫 A z | z x x = K V
61 fveqeq2 x = u x = K 1 u = K 1
62 61 elrab u x 𝒫 A | x = K 1 u 𝒫 A u = K 1
63 eleq2 x = u z z x z u z
64 fveqeq2 x = u z x = K u z = K
65 63 64 anbi12d x = u z z x x = K z u z u z = K
66 elpwi u 𝒫 A u A
67 66 ad2antrl φ u 𝒫 A u = K 1 u A
68 unss1 u A u z A z
69 67 68 syl φ u 𝒫 A u = K 1 u z A z
70 vex u V
71 snex z V
72 70 71 unex u z V
73 72 elpw u z 𝒫 A z u z A z
74 69 73 sylibr φ u 𝒫 A u = K 1 u z 𝒫 A z
75 1 adantr φ u 𝒫 A u = K 1 A Fin
76 75 67 ssfid φ u 𝒫 A u = K 1 u Fin
77 52 a1i φ u 𝒫 A u = K 1 z Fin
78 2 adantr φ u 𝒫 A u = K 1 ¬ z A
79 67 78 ssneldd φ u 𝒫 A u = K 1 ¬ z u
80 disjsn u z = ¬ z u
81 79 80 sylibr φ u 𝒫 A u = K 1 u z =
82 hashun u Fin z Fin u z = u z = u + z
83 76 77 81 82 syl3anc φ u 𝒫 A u = K 1 u z = u + z
84 simprr φ u 𝒫 A u = K 1 u = K 1
85 hashsng z V z = 1
86 85 elv z = 1
87 86 a1i φ u 𝒫 A u = K 1 z = 1
88 84 87 oveq12d φ u 𝒫 A u = K 1 u + z = K - 1 + 1
89 4 adantr φ u 𝒫 A u = K 1 K
90 89 zcnd φ u 𝒫 A u = K 1 K
91 ax-1cn 1
92 npcan K 1 K - 1 + 1 = K
93 90 91 92 sylancl φ u 𝒫 A u = K 1 K - 1 + 1 = K
94 83 88 93 3eqtrd φ u 𝒫 A u = K 1 u z = K
95 ssun2 z u z
96 vex z V
97 96 snss z u z z u z
98 95 97 mpbir z u z
99 94 98 jctil φ u 𝒫 A u = K 1 z u z u z = K
100 65 74 99 elrabd φ u 𝒫 A u = K 1 u z x 𝒫 A z | z x x = K
101 100 ex φ u 𝒫 A u = K 1 u z x 𝒫 A z | z x x = K
102 62 101 syl5bi φ u x 𝒫 A | x = K 1 u z x 𝒫 A z | z x x = K
103 eleq2 x = v z x z v
104 fveqeq2 x = v x = K v = K
105 103 104 anbi12d x = v z x x = K z v v = K
106 105 elrab v x 𝒫 A z | z x x = K v 𝒫 A z z v v = K
107 fveqeq2 x = v z x = K 1 v z = K 1
108 elpwi v 𝒫 A z v A z
109 108 ad2antrl φ v 𝒫 A z z v v = K v A z
110 109 20 sseqtrdi φ v 𝒫 A z z v v = K v z A
111 ssundif v z A v z A
112 110 111 sylib φ v 𝒫 A z z v v = K v z A
113 vex v V
114 113 difexi v z V
115 114 elpw v z 𝒫 A v z A
116 112 115 sylibr φ v 𝒫 A z z v v = K v z 𝒫 A
117 1 adantr φ v 𝒫 A z z v v = K A Fin
118 117 112 ssfid φ v 𝒫 A z z v v = K v z Fin
119 hashcl v z Fin v z 0
120 118 119 syl φ v 𝒫 A z z v v = K v z 0
121 120 nn0cnd φ v 𝒫 A z z v v = K v z
122 pncan v z 1 v z + 1 - 1 = v z
123 121 91 122 sylancl φ v 𝒫 A z z v v = K v z + 1 - 1 = v z
124 undif1 v z z = v z
125 simprrl φ v 𝒫 A z z v v = K z v
126 125 snssd φ v 𝒫 A z z v v = K z v
127 ssequn2 z v v z = v
128 126 127 sylib φ v 𝒫 A z z v v = K v z = v
129 124 128 syl5eq φ v 𝒫 A z z v v = K v z z = v
130 129 fveq2d φ v 𝒫 A z z v v = K v z z = v
131 52 a1i φ v 𝒫 A z z v v = K z Fin
132 incom v z z = z v z
133 disjdif z v z =
134 132 133 eqtri v z z =
135 134 a1i φ v 𝒫 A z z v v = K v z z =
136 hashun v z Fin z Fin v z z = v z z = v z + z
137 118 131 135 136 syl3anc φ v 𝒫 A z z v v = K v z z = v z + z
138 86 oveq2i v z + z = v z + 1
139 137 138 syl6eq φ v 𝒫 A z z v v = K v z z = v z + 1
140 simprrr φ v 𝒫 A z z v v = K v = K
141 130 139 140 3eqtr3d φ v 𝒫 A z z v v = K v z + 1 = K
142 141 oveq1d φ v 𝒫 A z z v v = K v z + 1 - 1 = K 1
143 123 142 eqtr3d φ v 𝒫 A z z v v = K v z = K 1
144 107 116 143 elrabd φ v 𝒫 A z z v v = K v z x 𝒫 A | x = K 1
145 144 ex φ v 𝒫 A z z v v = K v z x 𝒫 A | x = K 1
146 106 145 syl5bi φ v x 𝒫 A z | z x x = K v z x 𝒫 A | x = K 1
147 62 106 anbi12i u x 𝒫 A | x = K 1 v x 𝒫 A z | z x x = K u 𝒫 A u = K 1 v 𝒫 A z z v v = K
148 simp3rl φ u 𝒫 A u = K 1 v 𝒫 A z z v v = K z v
149 148 snssd φ u 𝒫 A u = K 1 v 𝒫 A z z v v = K z v
150 incom z u = u z
151 81 3adant3 φ u 𝒫 A u = K 1 v 𝒫 A z z v v = K u z =
152 150 151 syl5eq φ u 𝒫 A u = K 1 v 𝒫 A z z v v = K z u =
153 uneqdifeq z v z u = z u = v v z = u
154 149 152 153 syl2anc φ u 𝒫 A u = K 1 v 𝒫 A z z v v = K z u = v v z = u
155 154 bicomd φ u 𝒫 A u = K 1 v 𝒫 A z z v v = K v z = u z u = v
156 eqcom u = v z v z = u
157 eqcom v = u z u z = v
158 uncom u z = z u
159 158 eqeq1i u z = v z u = v
160 157 159 bitri v = u z z u = v
161 155 156 160 3bitr4g φ u 𝒫 A u = K 1 v 𝒫 A z z v v = K u = v z v = u z
162 161 3expib φ u 𝒫 A u = K 1 v 𝒫 A z z v v = K u = v z v = u z
163 147 162 syl5bi φ u x 𝒫 A | x = K 1 v x 𝒫 A z | z x x = K u = v z v = u z
164 51 60 102 146 163 en3d φ x 𝒫 A | x = K 1 x 𝒫 A z | z x x = K
165 ssrab2 x 𝒫 A | x = K 1 𝒫 A
166 ssfi 𝒫 A Fin x 𝒫 A | x = K 1 𝒫 A x 𝒫 A | x = K 1 Fin
167 49 165 166 sylancl φ x 𝒫 A | x = K 1 Fin
168 hashen x 𝒫 A | x = K 1 Fin x 𝒫 A z | z x x = K Fin x 𝒫 A | x = K 1 = x 𝒫 A z | z x x = K x 𝒫 A | x = K 1 x 𝒫 A z | z x x = K
169 167 59 168 syl2anc φ x 𝒫 A | x = K 1 = x 𝒫 A z | z x x = K x 𝒫 A | x = K 1 x 𝒫 A z | z x x = K
170 164 169 mpbird φ x 𝒫 A | x = K 1 = x 𝒫 A z | z x x = K
171 47 170 eqtrd φ ( A K 1 ) = x 𝒫 A z | z x x = K
172 39 171 oveq12d φ ( A K) + ( A K 1 ) = x 𝒫 A z | ¬ z x x = K + x 𝒫 A z | z x x = K
173 52 a1i φ z Fin
174 disjsn A z = ¬ z A
175 2 174 sylibr φ A z =
176 hashun A Fin z Fin A z = A z = A + z
177 1 173 175 176 syl3anc φ A z = A + z
178 86 oveq2i A + z = A + 1
179 177 178 syl6eq φ A z = A + 1
180 179 oveq1d φ ( A z K) = ( A + 1 K)
181 hashcl A Fin A 0
182 1 181 syl φ A 0
183 bcpasc A 0 K ( A K) + ( A K 1 ) = ( A + 1 K)
184 182 4 183 syl2anc φ ( A K) + ( A K 1 ) = ( A + 1 K)
185 180 184 eqtr4d φ ( A z K) = ( A K) + ( A K 1 )
186 pm2.1 ¬ z x z x
187 186 biantrur x = K ¬ z x z x x = K
188 andir ¬ z x z x x = K ¬ z x x = K z x x = K
189 187 188 bitri x = K ¬ z x x = K z x x = K
190 189 rabbii x 𝒫 A z | x = K = x 𝒫 A z | ¬ z x x = K z x x = K
191 unrab x 𝒫 A z | ¬ z x x = K x 𝒫 A z | z x x = K = x 𝒫 A z | ¬ z x x = K z x x = K
192 190 191 eqtr4i x 𝒫 A z | x = K = x 𝒫 A z | ¬ z x x = K x 𝒫 A z | z x x = K
193 192 fveq2i x 𝒫 A z | x = K = x 𝒫 A z | ¬ z x x = K x 𝒫 A z | z x x = K
194 ssrab2 x 𝒫 A z | ¬ z x x = K 𝒫 A z
195 ssfi 𝒫 A z Fin x 𝒫 A z | ¬ z x x = K 𝒫 A z x 𝒫 A z | ¬ z x x = K Fin
196 56 194 195 sylancl φ x 𝒫 A z | ¬ z x x = K Fin
197 inrab x 𝒫 A z | ¬ z x x = K x 𝒫 A z | z x x = K = x 𝒫 A z | ¬ z x x = K z x x = K
198 simprl ¬ z x x = K z x x = K z x
199 simpll ¬ z x x = K z x x = K ¬ z x
200 198 199 pm2.65i ¬ ¬ z x x = K z x x = K
201 200 rgenw x 𝒫 A z ¬ ¬ z x x = K z x x = K
202 rabeq0 x 𝒫 A z | ¬ z x x = K z x x = K = x 𝒫 A z ¬ ¬ z x x = K z x x = K
203 201 202 mpbir x 𝒫 A z | ¬ z x x = K z x x = K =
204 197 203 eqtri x 𝒫 A z | ¬ z x x = K x 𝒫 A z | z x x = K =
205 204 a1i φ x 𝒫 A z | ¬ z x x = K x 𝒫 A z | z x x = K =
206 hashun x 𝒫 A z | ¬ z x x = K Fin x 𝒫 A z | z x x = K Fin x 𝒫 A z | ¬ z x x = K x 𝒫 A z | z x x = K = x 𝒫 A z | ¬ z x x = K x 𝒫 A z | z x x = K = x 𝒫 A z | ¬ z x x = K + x 𝒫 A z | z x x = K
207 196 59 205 206 syl3anc φ x 𝒫 A z | ¬ z x x = K x 𝒫 A z | z x x = K = x 𝒫 A z | ¬ z x x = K + x 𝒫 A z | z x x = K
208 193 207 syl5eq φ x 𝒫 A z | x = K = x 𝒫 A z | ¬ z x x = K + x 𝒫 A z | z x x = K
209 172 185 208 3eqtr4d φ ( A z K) = x 𝒫 A z | x = K