Metamath Proof Explorer


Theorem hashbcss

Description: Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis ramval.c C = a V , i 0 b 𝒫 a | b = i
Assertion hashbcss A V B A N 0 B C N A C N

Proof

Step Hyp Ref Expression
1 ramval.c C = a V , i 0 b 𝒫 a | b = i
2 simp2 A V B A N 0 B A
3 2 sspwd A V B A N 0 𝒫 B 𝒫 A
4 rabss2 𝒫 B 𝒫 A x 𝒫 B | x = N x 𝒫 A | x = N
5 3 4 syl A V B A N 0 x 𝒫 B | x = N x 𝒫 A | x = N
6 simp1 A V B A N 0 A V
7 6 2 ssexd A V B A N 0 B V
8 simp3 A V B A N 0 N 0
9 1 hashbcval B V N 0 B C N = x 𝒫 B | x = N
10 7 8 9 syl2anc A V B A N 0 B C N = x 𝒫 B | x = N
11 1 hashbcval A V N 0 A C N = x 𝒫 A | x = N
12 11 3adant2 A V B A N 0 A C N = x 𝒫 A | x = N
13 5 10 12 3sstr4d A V B A N 0 B C N A C N