Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Ramsey's theorem
hashbcss
Next ⟩
hashbc0
Metamath Proof Explorer
Ascii
Unicode
Theorem
hashbcss
Description:
Subset relation for the binomial set.
(Contributed by
Mario Carneiro
, 20-Apr-2015)
Ref
Expression
Hypothesis
ramval.c
⊢
C
=
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
Assertion
hashbcss
⊢
A
∈
V
∧
B
⊆
A
∧
N
∈
ℕ
0
→
B
C
N
⊆
A
C
N
Proof
Step
Hyp
Ref
Expression
1
ramval.c
⊢
C
=
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
2
simp2
⊢
A
∈
V
∧
B
⊆
A
∧
N
∈
ℕ
0
→
B
⊆
A
3
2
sspwd
⊢
A
∈
V
∧
B
⊆
A
∧
N
∈
ℕ
0
→
𝒫
B
⊆
𝒫
A
4
rabss2
⊢
𝒫
B
⊆
𝒫
A
→
x
∈
𝒫
B
|
x
=
N
⊆
x
∈
𝒫
A
|
x
=
N
5
3
4
syl
⊢
A
∈
V
∧
B
⊆
A
∧
N
∈
ℕ
0
→
x
∈
𝒫
B
|
x
=
N
⊆
x
∈
𝒫
A
|
x
=
N
6
simp1
⊢
A
∈
V
∧
B
⊆
A
∧
N
∈
ℕ
0
→
A
∈
V
7
6
2
ssexd
⊢
A
∈
V
∧
B
⊆
A
∧
N
∈
ℕ
0
→
B
∈
V
8
simp3
⊢
A
∈
V
∧
B
⊆
A
∧
N
∈
ℕ
0
→
N
∈
ℕ
0
9
1
hashbcval
⊢
B
∈
V
∧
N
∈
ℕ
0
→
B
C
N
=
x
∈
𝒫
B
|
x
=
N
10
7
8
9
syl2anc
⊢
A
∈
V
∧
B
⊆
A
∧
N
∈
ℕ
0
→
B
C
N
=
x
∈
𝒫
B
|
x
=
N
11
1
hashbcval
⊢
A
∈
V
∧
N
∈
ℕ
0
→
A
C
N
=
x
∈
𝒫
A
|
x
=
N
12
11
3adant2
⊢
A
∈
V
∧
B
⊆
A
∧
N
∈
ℕ
0
→
A
C
N
=
x
∈
𝒫
A
|
x
=
N
13
5
10
12
3sstr4d
⊢
A
∈
V
∧
B
⊆
A
∧
N
∈
ℕ
0
→
B
C
N
⊆
A
C
N