Metamath Proof Explorer


Theorem hashbcval

Description: Value of the "binomial set", the set of all N -element subsets of A . (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis ramval.c C = a V , i 0 b 𝒫 a | b = i
Assertion hashbcval A V N 0 A C N = x 𝒫 A | x = N

Proof

Step Hyp Ref Expression
1 ramval.c C = a V , i 0 b 𝒫 a | b = i
2 elex A V A V
3 pwexg A V 𝒫 A V
4 3 adantr A V N 0 𝒫 A V
5 rabexg 𝒫 A V x 𝒫 A | x = N V
6 4 5 syl A V N 0 x 𝒫 A | x = N V
7 fveqeq2 b = x b = i x = i
8 7 cbvrabv b 𝒫 a | b = i = x 𝒫 a | x = i
9 simpl a = A i = N a = A
10 9 pweqd a = A i = N 𝒫 a = 𝒫 A
11 simpr a = A i = N i = N
12 11 eqeq2d a = A i = N x = i x = N
13 10 12 rabeqbidv a = A i = N x 𝒫 a | x = i = x 𝒫 A | x = N
14 8 13 eqtrid a = A i = N b 𝒫 a | b = i = x 𝒫 A | x = N
15 14 1 ovmpoga A V N 0 x 𝒫 A | x = N V A C N = x 𝒫 A | x = N
16 6 15 mpd3an3 A V N 0 A C N = x 𝒫 A | x = N
17 2 16 sylan A V N 0 A C N = x 𝒫 A | x = N