Metamath Proof Explorer


Theorem hashbnd

Description: If A has size bounded by an integer B , then A is finite. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Assertion hashbnd A V B 0 A B A Fin

Proof

Step Hyp Ref Expression
1 nn0re B 0 B
2 ltpnf B B < +∞
3 rexr B B *
4 pnfxr +∞ *
5 xrltnle B * +∞ * B < +∞ ¬ +∞ B
6 3 4 5 sylancl B B < +∞ ¬ +∞ B
7 2 6 mpbid B ¬ +∞ B
8 1 7 syl B 0 ¬ +∞ B
9 hashinf A V ¬ A Fin A = +∞
10 9 breq1d A V ¬ A Fin A B +∞ B
11 10 notbid A V ¬ A Fin ¬ A B ¬ +∞ B
12 8 11 syl5ibrcom B 0 A V ¬ A Fin ¬ A B
13 12 expdimp B 0 A V ¬ A Fin ¬ A B
14 13 ancoms A V B 0 ¬ A Fin ¬ A B
15 14 con4d A V B 0 A B A Fin
16 15 3impia A V B 0 A B A Fin