Metamath Proof Explorer


Theorem hashcard

Description: The size function of the cardinality function. (Contributed by Mario Carneiro, 19-Sep-2013) (Revised by Mario Carneiro, 4-Nov-2013)

Ref Expression
Assertion hashcard A Fin card A = A

Proof

Step Hyp Ref Expression
1 cardidm card card A = card A
2 1 fveq2i rec x V x + 1 0 ω card card A = rec x V x + 1 0 ω card A
3 ficardom A Fin card A ω
4 ssid card A card A
5 ssnnfi card A ω card A card A card A Fin
6 3 4 5 sylancl A Fin card A Fin
7 eqid rec x V x + 1 0 ω = rec x V x + 1 0 ω
8 7 hashgval card A Fin rec x V x + 1 0 ω card card A = card A
9 6 8 syl A Fin rec x V x + 1 0 ω card card A = card A
10 7 hashgval A Fin rec x V x + 1 0 ω card A = A
11 2 9 10 3eqtr3a A Fin card A = A