Metamath Proof Explorer


Theorem hashcl

Description: Closure of the # function. (Contributed by Paul Chapman, 26-Oct-2012) (Revised by Mario Carneiro, 13-Jul-2014)

Ref Expression
Assertion hashcl A Fin A 0

Proof

Step Hyp Ref Expression
1 eqid rec x V x + 1 0 ω = rec x V x + 1 0 ω
2 1 hashgval A Fin rec x V x + 1 0 ω card A = A
3 ficardom A Fin card A ω
4 1 hashgf1o rec x V x + 1 0 ω : ω 1-1 onto 0
5 f1of rec x V x + 1 0 ω : ω 1-1 onto 0 rec x V x + 1 0 ω : ω 0
6 4 5 ax-mp rec x V x + 1 0 ω : ω 0
7 6 ffvelrni card A ω rec x V x + 1 0 ω card A 0
8 3 7 syl A Fin rec x V x + 1 0 ω card A 0
9 2 8 eqeltrrd A Fin A 0