Metamath Proof Explorer


Theorem hashclb

Description: Reverse closure of the # function. (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Assertion hashclb A V A Fin A 0

Proof

Step Hyp Ref Expression
1 hashcl A Fin A 0
2 nn0re A 0 A
3 pnfnre +∞
4 3 neli ¬ +∞
5 hashinf A V ¬ A Fin A = +∞
6 5 eleq1d A V ¬ A Fin A +∞
7 4 6 mtbiri A V ¬ A Fin ¬ A
8 7 ex A V ¬ A Fin ¬ A
9 8 con4d A V A A Fin
10 2 9 syl5 A V A 0 A Fin
11 1 10 impbid2 A V A Fin A 0