Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
hashclb
Next ⟩
nfile
Metamath Proof Explorer
Ascii
Unicode
Theorem
hashclb
Description:
Reverse closure of the
#
function.
(Contributed by
Mario Carneiro
, 15-Jan-2015)
Ref
Expression
Assertion
hashclb
⊢
A
∈
V
→
A
∈
Fin
↔
A
∈
ℕ
0
Proof
Step
Hyp
Ref
Expression
1
hashcl
⊢
A
∈
Fin
→
A
∈
ℕ
0
2
nn0re
⊢
A
∈
ℕ
0
→
A
∈
ℝ
3
pnfnre
⊢
+∞
∉
ℝ
4
3
neli
⊢
¬
+∞
∈
ℝ
5
hashinf
⊢
A
∈
V
∧
¬
A
∈
Fin
→
A
=
+∞
6
5
eleq1d
⊢
A
∈
V
∧
¬
A
∈
Fin
→
A
∈
ℝ
↔
+∞
∈
ℝ
7
4
6
mtbiri
⊢
A
∈
V
∧
¬
A
∈
Fin
→
¬
A
∈
ℝ
8
7
ex
⊢
A
∈
V
→
¬
A
∈
Fin
→
¬
A
∈
ℝ
9
8
con4d
⊢
A
∈
V
→
A
∈
ℝ
→
A
∈
Fin
10
2
9
syl5
⊢
A
∈
V
→
A
∈
ℕ
0
→
A
∈
Fin
11
1
10
impbid2
⊢
A
∈
V
→
A
∈
Fin
↔
A
∈
ℕ
0