Metamath Proof Explorer


Theorem hashdifsn

Description: The size of the difference of a finite set and a singleton subset is the set's size minus 1. (Contributed by Alexander van der Vekens, 6-Jan-2018)

Ref Expression
Assertion hashdifsn A Fin B A A B = A 1

Proof

Step Hyp Ref Expression
1 snssi B A B A
2 hashssdif A Fin B A A B = A B
3 1 2 sylan2 A Fin B A A B = A B
4 hashsng B A B = 1
5 4 adantl A Fin B A B = 1
6 5 oveq2d A Fin B A A B = A 1
7 3 6 eqtrd A Fin B A A B = A 1