Metamath Proof Explorer


Theorem hashdmpropge2

Description: The size of the domain of a class which contains two ordered pairs with different first components is greater than or equal to 2. (Contributed by AV, 12-Nov-2021)

Ref Expression
Hypotheses hashdmpropge2.a φ A V
hashdmpropge2.b φ B W
hashdmpropge2.c φ C X
hashdmpropge2.d φ D Y
hashdmpropge2.f φ F Z
hashdmpropge2.n φ A B
hashdmpropge2.s φ A C B D F
Assertion hashdmpropge2 φ 2 dom F

Proof

Step Hyp Ref Expression
1 hashdmpropge2.a φ A V
2 hashdmpropge2.b φ B W
3 hashdmpropge2.c φ C X
4 hashdmpropge2.d φ D Y
5 hashdmpropge2.f φ F Z
6 hashdmpropge2.n φ A B
7 hashdmpropge2.s φ A C B D F
8 5 dmexd φ dom F V
9 dmpropg C X D Y dom A C B D = A B
10 3 4 9 syl2anc φ dom A C B D = A B
11 dmss A C B D F dom A C B D dom F
12 7 11 syl φ dom A C B D dom F
13 10 12 eqsstrrd φ A B dom F
14 prssg A V B W A dom F B dom F A B dom F
15 1 2 14 syl2anc φ A dom F B dom F A B dom F
16 neeq1 a = A a b A b
17 neeq2 b = B A b A B
18 16 17 rspc2ev A dom F B dom F A B a dom F b dom F a b
19 18 3expa A dom F B dom F A B a dom F b dom F a b
20 19 expcom A B A dom F B dom F a dom F b dom F a b
21 6 20 syl φ A dom F B dom F a dom F b dom F a b
22 15 21 sylbird φ A B dom F a dom F b dom F a b
23 13 22 mpd φ a dom F b dom F a b
24 hashge2el2difr dom F V a dom F b dom F a b 2 dom F
25 8 23 24 syl2anc φ 2 dom F