Metamath Proof Explorer


Theorem hashdomi

Description: Non-strict order relation of the # function on the full cardinal poset. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Assertion hashdomi A B A B

Proof

Step Hyp Ref Expression
1 simpl A B A Fin A B
2 simpr A B A Fin A Fin
3 reldom Rel
4 3 brrelex2i A B B V
5 4 adantr A B A Fin B V
6 hashdom A Fin B V A B A B
7 2 5 6 syl2anc A B A Fin A B A B
8 1 7 mpbird A B A Fin A B
9 pnfxr +∞ *
10 pnfge +∞ * +∞ +∞
11 9 10 mp1i A B ¬ A Fin +∞ +∞
12 3 brrelex1i A B A V
13 hashinf A V ¬ A Fin A = +∞
14 12 13 sylan A B ¬ A Fin A = +∞
15 4 adantr A B ¬ A Fin B V
16 domfi B Fin A B A Fin
17 16 stoic1b A B ¬ A Fin ¬ B Fin
18 hashinf B V ¬ B Fin B = +∞
19 15 17 18 syl2anc A B ¬ A Fin B = +∞
20 11 14 19 3brtr4d A B ¬ A Fin A B
21 8 20 pm2.61dan A B A B