Metamath Proof Explorer


Theorem hashelne0d

Description: A set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses hashelne0d.1 φ B A
hashelne0d.2 φ A V
Assertion hashelne0d φ ¬ A = 0

Proof

Step Hyp Ref Expression
1 hashelne0d.1 φ B A
2 hashelne0d.2 φ A V
3 1 ne0d φ A
4 3 neneqd φ ¬ A =
5 hasheq0 A V A = 0 A =
6 2 5 syl φ A = 0 A =
7 4 6 mtbird φ ¬ A = 0