Metamath Proof Explorer
Description: A set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023)
|
|
Ref |
Expression |
|
Hypotheses |
hashelne0d.1 |
|
|
|
hashelne0d.2 |
|
|
Assertion |
hashelne0d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
hashelne0d.1 |
|
2 |
|
hashelne0d.2 |
|
3 |
1
|
ne0d |
|
4 |
3
|
neneqd |
|
5 |
|
hasheq0 |
|
6 |
2 5
|
syl |
|
7 |
4 6
|
mtbird |
|