Metamath Proof Explorer
		
		
		
		Description:  A set with an element has nonzero size.  (Contributed by Rohan Ridenour, 3-Aug-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | hashelne0d.1 |  | 
					
						|  |  | hashelne0d.2 |  | 
				
					|  | Assertion | hashelne0d |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashelne0d.1 |  | 
						
							| 2 |  | hashelne0d.2 |  | 
						
							| 3 | 1 | ne0d |  | 
						
							| 4 | 3 | neneqd |  | 
						
							| 5 |  | hasheq0 |  | 
						
							| 6 | 2 5 | syl |  | 
						
							| 7 | 4 6 | mtbird |  |