Metamath Proof Explorer


Theorem hashen1

Description: A set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019)

Ref Expression
Assertion hashen1 A V A = 1 A 1 𝑜

Proof

Step Hyp Ref Expression
1 0ex V
2 hashsng V = 1
3 1 2 ax-mp = 1
4 3 eqcomi 1 =
5 4 a1i A V 1 =
6 5 eqeq2d A V A = 1 A =
7 simpr A V A = A =
8 1nn0 1 0
9 3 8 eqeltri 0
10 hashvnfin A V 0 A = A Fin
11 9 10 mpan2 A V A = A Fin
12 11 imp A V A = A Fin
13 snfi Fin
14 hashen A Fin Fin A = A
15 12 13 14 sylancl A V A = A = A
16 7 15 mpbid A V A = A
17 16 ex A V A = A
18 hasheni A A =
19 17 18 impbid1 A V A = A
20 df1o2 1 𝑜 =
21 20 eqcomi = 1 𝑜
22 21 breq2i A A 1 𝑜
23 22 a1i A V A A 1 𝑜
24 6 19 23 3bitrd A V A = 1 A 1 𝑜