Metamath Proof Explorer


Theorem hasheni

Description: Equinumerous sets have the same number of elements (even if they are not finite). (Contributed by Mario Carneiro, 15-Apr-2015)

Ref Expression
Assertion hasheni A B A = B

Proof

Step Hyp Ref Expression
1 simpl A B B Fin A B
2 enfii B Fin A B A Fin
3 2 ancoms A B B Fin A Fin
4 hashen A Fin B Fin A = B A B
5 3 4 sylancom A B B Fin A = B A B
6 1 5 mpbird A B B Fin A = B
7 relen Rel
8 7 brrelex1i A B A V
9 enfi A B A Fin B Fin
10 9 notbid A B ¬ A Fin ¬ B Fin
11 10 biimpar A B ¬ B Fin ¬ A Fin
12 hashinf A V ¬ A Fin A = +∞
13 8 11 12 syl2an2r A B ¬ B Fin A = +∞
14 7 brrelex2i A B B V
15 hashinf B V ¬ B Fin B = +∞
16 14 15 sylan A B ¬ B Fin B = +∞
17 13 16 eqtr4d A B ¬ B Fin A = B
18 6 17 pm2.61dan A B A = B