Metamath Proof Explorer


Theorem hasheq0

Description: Two ways of saying a finite set is empty. (Contributed by Paul Chapman, 26-Oct-2012) (Revised by Mario Carneiro, 27-Jul-2014)

Ref Expression
Assertion hasheq0 A V A = 0 A =

Proof

Step Hyp Ref Expression
1 pnfnre +∞
2 1 neli ¬ +∞
3 hashinf A V ¬ A Fin A = +∞
4 3 eleq1d A V ¬ A Fin A +∞
5 2 4 mtbiri A V ¬ A Fin ¬ A
6 id A = 0 A = 0
7 0re 0
8 6 7 eqeltrdi A = 0 A
9 5 8 nsyl A V ¬ A Fin ¬ A = 0
10 id A = A =
11 0fin Fin
12 10 11 eqeltrdi A = A Fin
13 12 con3i ¬ A Fin ¬ A =
14 13 adantl A V ¬ A Fin ¬ A =
15 9 14 2falsed A V ¬ A Fin A = 0 A =
16 15 ex A V ¬ A Fin A = 0 A =
17 hashen A Fin Fin A = A
18 11 17 mpan2 A Fin A = A
19 fz10 1 0 =
20 19 fveq2i 1 0 =
21 0nn0 0 0
22 hashfz1 0 0 1 0 = 0
23 21 22 ax-mp 1 0 = 0
24 20 23 eqtr3i = 0
25 24 eqeq2i A = A = 0
26 en0 A A =
27 18 25 26 3bitr3g A Fin A = 0 A =
28 16 27 pm2.61d2 A V A = 0 A =