Metamath Proof Explorer


Theorem hasheqf1od

Description: The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by AV, 4-May-2021)

Ref Expression
Hypotheses hasheqf1od.a φ A U
hasheqf1od.f φ F : A 1-1 onto B
Assertion hasheqf1od φ A = B

Proof

Step Hyp Ref Expression
1 hasheqf1od.a φ A U
2 hasheqf1od.f φ F : A 1-1 onto B
3 f1of F : A 1-1 onto B F : A B
4 2 3 syl φ F : A B
5 4 1 fexd φ F V
6 f1oeq1 f = F f : A 1-1 onto B F : A 1-1 onto B
7 5 2 6 spcedv φ f f : A 1-1 onto B
8 hasheqf1oi A U f f : A 1-1 onto B A = B
9 1 7 8 sylc φ A = B