| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1eq2 |
|
| 2 |
|
f1fn |
|
| 3 |
|
fn0 |
|
| 4 |
2 3
|
sylib |
|
| 5 |
|
f10 |
|
| 6 |
|
f1eq1 |
|
| 7 |
5 6
|
mpbiri |
|
| 8 |
4 7
|
impbii |
|
| 9 |
|
velsn |
|
| 10 |
8 9
|
bitr4i |
|
| 11 |
1 10
|
bitrdi |
|
| 12 |
11
|
eqabcdv |
|
| 13 |
12
|
fveq2d |
|
| 14 |
|
0ex |
|
| 15 |
|
hashsng |
|
| 16 |
14 15
|
ax-mp |
|
| 17 |
13 16
|
eqtrdi |
|
| 18 |
|
fveq2 |
|
| 19 |
|
hash0 |
|
| 20 |
18 19
|
eqtrdi |
|
| 21 |
20
|
fveq2d |
|
| 22 |
|
fac0 |
|
| 23 |
21 22
|
eqtrdi |
|
| 24 |
20
|
oveq2d |
|
| 25 |
23 24
|
oveq12d |
|
| 26 |
17 25
|
eqeq12d |
|
| 27 |
26
|
imbi2d |
|
| 28 |
|
f1eq2 |
|
| 29 |
28
|
abbidv |
|
| 30 |
29
|
fveq2d |
|
| 31 |
|
2fveq3 |
|
| 32 |
|
fveq2 |
|
| 33 |
32
|
oveq2d |
|
| 34 |
31 33
|
oveq12d |
|
| 35 |
30 34
|
eqeq12d |
|
| 36 |
35
|
imbi2d |
|
| 37 |
|
f1eq2 |
|
| 38 |
37
|
abbidv |
|
| 39 |
38
|
fveq2d |
|
| 40 |
|
2fveq3 |
|
| 41 |
|
fveq2 |
|
| 42 |
41
|
oveq2d |
|
| 43 |
40 42
|
oveq12d |
|
| 44 |
39 43
|
eqeq12d |
|
| 45 |
44
|
imbi2d |
|
| 46 |
|
f1eq2 |
|
| 47 |
46
|
abbidv |
|
| 48 |
47
|
fveq2d |
|
| 49 |
|
2fveq3 |
|
| 50 |
|
fveq2 |
|
| 51 |
50
|
oveq2d |
|
| 52 |
49 51
|
oveq12d |
|
| 53 |
48 52
|
eqeq12d |
|
| 54 |
53
|
imbi2d |
|
| 55 |
|
hashcl |
|
| 56 |
|
bcn0 |
|
| 57 |
55 56
|
syl |
|
| 58 |
57
|
oveq2d |
|
| 59 |
|
1t1e1 |
|
| 60 |
58 59
|
eqtr2di |
|
| 61 |
|
abn0 |
|
| 62 |
|
f1domg |
|
| 63 |
62
|
adantr |
|
| 64 |
|
hashunsng |
|
| 65 |
64
|
elv |
|
| 66 |
65
|
adantl |
|
| 67 |
66
|
breq1d |
|
| 68 |
|
simprl |
|
| 69 |
|
snfi |
|
| 70 |
|
unfi |
|
| 71 |
68 69 70
|
sylancl |
|
| 72 |
|
simpl |
|
| 73 |
|
hashdom |
|
| 74 |
71 72 73
|
syl2anc |
|
| 75 |
|
hashcl |
|
| 76 |
75
|
ad2antrl |
|
| 77 |
|
nn0p1nn |
|
| 78 |
76 77
|
syl |
|
| 79 |
78
|
nnred |
|
| 80 |
55
|
adantr |
|
| 81 |
80
|
nn0red |
|
| 82 |
79 81
|
lenltd |
|
| 83 |
67 74 82
|
3bitr3d |
|
| 84 |
63 83
|
sylibd |
|
| 85 |
84
|
exlimdv |
|
| 86 |
61 85
|
biimtrid |
|
| 87 |
86
|
necon4ad |
|
| 88 |
87
|
imp |
|
| 89 |
88
|
fveq2d |
|
| 90 |
|
hashcl |
|
| 91 |
71 90
|
syl |
|
| 92 |
91
|
faccld |
|
| 93 |
92
|
nncnd |
|
| 94 |
93
|
adantr |
|
| 95 |
94
|
mul01d |
|
| 96 |
19 89 95
|
3eqtr4a |
|
| 97 |
66
|
adantr |
|
| 98 |
97
|
oveq2d |
|
| 99 |
80
|
adantr |
|
| 100 |
78
|
adantr |
|
| 101 |
100
|
nnzd |
|
| 102 |
|
animorr |
|
| 103 |
|
bcval4 |
|
| 104 |
99 101 102 103
|
syl3anc |
|
| 105 |
98 104
|
eqtrd |
|
| 106 |
105
|
oveq2d |
|
| 107 |
96 106
|
eqtr4d |
|
| 108 |
107
|
a1d |
|
| 109 |
|
oveq2 |
|
| 110 |
68
|
adantr |
|
| 111 |
72
|
adantr |
|
| 112 |
|
simplrr |
|
| 113 |
|
simpr |
|
| 114 |
110 111 112 113
|
hashf1lem2 |
|
| 115 |
80
|
adantr |
|
| 116 |
115
|
faccld |
|
| 117 |
116
|
nncnd |
|
| 118 |
76
|
adantr |
|
| 119 |
|
peano2nn0 |
|
| 120 |
118 119
|
syl |
|
| 121 |
|
nn0sub2 |
|
| 122 |
120 115 113 121
|
syl3anc |
|
| 123 |
122
|
faccld |
|
| 124 |
123
|
nncnd |
|
| 125 |
123
|
nnne0d |
|
| 126 |
117 124 125
|
divcld |
|
| 127 |
120
|
faccld |
|
| 128 |
127
|
nncnd |
|
| 129 |
127
|
nnne0d |
|
| 130 |
126 128 129
|
divcan2d |
|
| 131 |
115
|
nn0cnd |
|
| 132 |
118
|
nn0cnd |
|
| 133 |
131 132
|
subcld |
|
| 134 |
|
ax-1cn |
|
| 135 |
|
npcan |
|
| 136 |
133 134 135
|
sylancl |
|
| 137 |
|
1cnd |
|
| 138 |
131 132 137
|
subsub4d |
|
| 139 |
138 122
|
eqeltrd |
|
| 140 |
|
nn0p1nn |
|
| 141 |
139 140
|
syl |
|
| 142 |
136 141
|
eqeltrrd |
|
| 143 |
142
|
nnne0d |
|
| 144 |
126 133 143
|
divcan2d |
|
| 145 |
130 144
|
eqtr4d |
|
| 146 |
66
|
adantr |
|
| 147 |
146
|
fveq2d |
|
| 148 |
|
nn0uz |
|
| 149 |
120 148
|
eleqtrdi |
|
| 150 |
115
|
nn0zd |
|
| 151 |
|
elfz5 |
|
| 152 |
149 150 151
|
syl2anc |
|
| 153 |
113 152
|
mpbird |
|
| 154 |
|
bcval2 |
|
| 155 |
153 154
|
syl |
|
| 156 |
146
|
oveq2d |
|
| 157 |
117 124 128 125 129
|
divdiv1d |
|
| 158 |
155 156 157
|
3eqtr4d |
|
| 159 |
147 158
|
oveq12d |
|
| 160 |
118 148
|
eleqtrdi |
|
| 161 |
|
peano2fzr |
|
| 162 |
160 153 161
|
syl2anc |
|
| 163 |
|
bcval2 |
|
| 164 |
162 163
|
syl |
|
| 165 |
|
elfzle2 |
|
| 166 |
162 165
|
syl |
|
| 167 |
|
nn0sub2 |
|
| 168 |
118 115 166 167
|
syl3anc |
|
| 169 |
168
|
faccld |
|
| 170 |
169
|
nncnd |
|
| 171 |
118
|
faccld |
|
| 172 |
171
|
nncnd |
|
| 173 |
169
|
nnne0d |
|
| 174 |
171
|
nnne0d |
|
| 175 |
117 170 172 173 174
|
divdiv1d |
|
| 176 |
164 175
|
eqtr4d |
|
| 177 |
176
|
oveq2d |
|
| 178 |
|
facnn2 |
|
| 179 |
142 178
|
syl |
|
| 180 |
138
|
fveq2d |
|
| 181 |
180
|
oveq1d |
|
| 182 |
179 181
|
eqtrd |
|
| 183 |
182
|
oveq2d |
|
| 184 |
117 170 173
|
divcld |
|
| 185 |
184 172 174
|
divcan2d |
|
| 186 |
117 124 133 125 143
|
divdiv1d |
|
| 187 |
183 185 186
|
3eqtr4d |
|
| 188 |
177 187
|
eqtrd |
|
| 189 |
188
|
oveq2d |
|
| 190 |
145 159 189
|
3eqtr4d |
|
| 191 |
114 190
|
eqeq12d |
|
| 192 |
109 191
|
imbitrrid |
|
| 193 |
108 192 81 79
|
ltlecasei |
|
| 194 |
193
|
expcom |
|
| 195 |
194
|
a2d |
|
| 196 |
27 36 45 54 60 195
|
findcard2s |
|
| 197 |
196
|
imp |
|