Step |
Hyp |
Ref |
Expression |
1 |
|
f1eq2 |
|
2 |
|
f1fn |
|
3 |
|
fn0 |
|
4 |
2 3
|
sylib |
|
5 |
|
f10 |
|
6 |
|
f1eq1 |
|
7 |
5 6
|
mpbiri |
|
8 |
4 7
|
impbii |
|
9 |
|
velsn |
|
10 |
8 9
|
bitr4i |
|
11 |
1 10
|
bitrdi |
|
12 |
11
|
abbi1dv |
|
13 |
12
|
fveq2d |
|
14 |
|
0ex |
|
15 |
|
hashsng |
|
16 |
14 15
|
ax-mp |
|
17 |
13 16
|
eqtrdi |
|
18 |
|
fveq2 |
|
19 |
|
hash0 |
|
20 |
18 19
|
eqtrdi |
|
21 |
20
|
fveq2d |
|
22 |
|
fac0 |
|
23 |
21 22
|
eqtrdi |
|
24 |
20
|
oveq2d |
|
25 |
23 24
|
oveq12d |
|
26 |
17 25
|
eqeq12d |
|
27 |
26
|
imbi2d |
|
28 |
|
f1eq2 |
|
29 |
28
|
abbidv |
|
30 |
29
|
fveq2d |
|
31 |
|
2fveq3 |
|
32 |
|
fveq2 |
|
33 |
32
|
oveq2d |
|
34 |
31 33
|
oveq12d |
|
35 |
30 34
|
eqeq12d |
|
36 |
35
|
imbi2d |
|
37 |
|
f1eq2 |
|
38 |
37
|
abbidv |
|
39 |
38
|
fveq2d |
|
40 |
|
2fveq3 |
|
41 |
|
fveq2 |
|
42 |
41
|
oveq2d |
|
43 |
40 42
|
oveq12d |
|
44 |
39 43
|
eqeq12d |
|
45 |
44
|
imbi2d |
|
46 |
|
f1eq2 |
|
47 |
46
|
abbidv |
|
48 |
47
|
fveq2d |
|
49 |
|
2fveq3 |
|
50 |
|
fveq2 |
|
51 |
50
|
oveq2d |
|
52 |
49 51
|
oveq12d |
|
53 |
48 52
|
eqeq12d |
|
54 |
53
|
imbi2d |
|
55 |
|
hashcl |
|
56 |
|
bcn0 |
|
57 |
55 56
|
syl |
|
58 |
57
|
oveq2d |
|
59 |
|
1t1e1 |
|
60 |
58 59
|
eqtr2di |
|
61 |
|
abn0 |
|
62 |
|
f1domg |
|
63 |
62
|
adantr |
|
64 |
|
hashunsng |
|
65 |
64
|
elv |
|
66 |
65
|
adantl |
|
67 |
66
|
breq1d |
|
68 |
|
simprl |
|
69 |
|
snfi |
|
70 |
|
unfi |
|
71 |
68 69 70
|
sylancl |
|
72 |
|
simpl |
|
73 |
|
hashdom |
|
74 |
71 72 73
|
syl2anc |
|
75 |
|
hashcl |
|
76 |
75
|
ad2antrl |
|
77 |
|
nn0p1nn |
|
78 |
76 77
|
syl |
|
79 |
78
|
nnred |
|
80 |
55
|
adantr |
|
81 |
80
|
nn0red |
|
82 |
79 81
|
lenltd |
|
83 |
67 74 82
|
3bitr3d |
|
84 |
63 83
|
sylibd |
|
85 |
84
|
exlimdv |
|
86 |
61 85
|
syl5bi |
|
87 |
86
|
necon4ad |
|
88 |
87
|
imp |
|
89 |
88
|
fveq2d |
|
90 |
|
hashcl |
|
91 |
71 90
|
syl |
|
92 |
91
|
faccld |
|
93 |
92
|
nncnd |
|
94 |
93
|
adantr |
|
95 |
94
|
mul01d |
|
96 |
19 89 95
|
3eqtr4a |
|
97 |
66
|
adantr |
|
98 |
97
|
oveq2d |
|
99 |
80
|
adantr |
|
100 |
78
|
adantr |
|
101 |
100
|
nnzd |
|
102 |
|
animorr |
|
103 |
|
bcval4 |
|
104 |
99 101 102 103
|
syl3anc |
|
105 |
98 104
|
eqtrd |
|
106 |
105
|
oveq2d |
|
107 |
96 106
|
eqtr4d |
|
108 |
107
|
a1d |
|
109 |
|
oveq2 |
|
110 |
68
|
adantr |
|
111 |
72
|
adantr |
|
112 |
|
simplrr |
|
113 |
|
simpr |
|
114 |
110 111 112 113
|
hashf1lem2 |
|
115 |
80
|
adantr |
|
116 |
115
|
faccld |
|
117 |
116
|
nncnd |
|
118 |
76
|
adantr |
|
119 |
|
peano2nn0 |
|
120 |
118 119
|
syl |
|
121 |
|
nn0sub2 |
|
122 |
120 115 113 121
|
syl3anc |
|
123 |
122
|
faccld |
|
124 |
123
|
nncnd |
|
125 |
123
|
nnne0d |
|
126 |
117 124 125
|
divcld |
|
127 |
120
|
faccld |
|
128 |
127
|
nncnd |
|
129 |
127
|
nnne0d |
|
130 |
126 128 129
|
divcan2d |
|
131 |
115
|
nn0cnd |
|
132 |
118
|
nn0cnd |
|
133 |
131 132
|
subcld |
|
134 |
|
ax-1cn |
|
135 |
|
npcan |
|
136 |
133 134 135
|
sylancl |
|
137 |
|
1cnd |
|
138 |
131 132 137
|
subsub4d |
|
139 |
138 122
|
eqeltrd |
|
140 |
|
nn0p1nn |
|
141 |
139 140
|
syl |
|
142 |
136 141
|
eqeltrrd |
|
143 |
142
|
nnne0d |
|
144 |
126 133 143
|
divcan2d |
|
145 |
130 144
|
eqtr4d |
|
146 |
66
|
adantr |
|
147 |
146
|
fveq2d |
|
148 |
|
nn0uz |
|
149 |
120 148
|
eleqtrdi |
|
150 |
115
|
nn0zd |
|
151 |
|
elfz5 |
|
152 |
149 150 151
|
syl2anc |
|
153 |
113 152
|
mpbird |
|
154 |
|
bcval2 |
|
155 |
153 154
|
syl |
|
156 |
146
|
oveq2d |
|
157 |
117 124 128 125 129
|
divdiv1d |
|
158 |
155 156 157
|
3eqtr4d |
|
159 |
147 158
|
oveq12d |
|
160 |
118 148
|
eleqtrdi |
|
161 |
|
peano2fzr |
|
162 |
160 153 161
|
syl2anc |
|
163 |
|
bcval2 |
|
164 |
162 163
|
syl |
|
165 |
|
elfzle2 |
|
166 |
162 165
|
syl |
|
167 |
|
nn0sub2 |
|
168 |
118 115 166 167
|
syl3anc |
|
169 |
168
|
faccld |
|
170 |
169
|
nncnd |
|
171 |
118
|
faccld |
|
172 |
171
|
nncnd |
|
173 |
169
|
nnne0d |
|
174 |
171
|
nnne0d |
|
175 |
117 170 172 173 174
|
divdiv1d |
|
176 |
164 175
|
eqtr4d |
|
177 |
176
|
oveq2d |
|
178 |
|
facnn2 |
|
179 |
142 178
|
syl |
|
180 |
138
|
fveq2d |
|
181 |
180
|
oveq1d |
|
182 |
179 181
|
eqtrd |
|
183 |
182
|
oveq2d |
|
184 |
117 170 173
|
divcld |
|
185 |
184 172 174
|
divcan2d |
|
186 |
117 124 133 125 143
|
divdiv1d |
|
187 |
183 185 186
|
3eqtr4d |
|
188 |
177 187
|
eqtrd |
|
189 |
188
|
oveq2d |
|
190 |
145 159 189
|
3eqtr4d |
|
191 |
114 190
|
eqeq12d |
|
192 |
109 191
|
syl5ibr |
|
193 |
108 192 81 79
|
ltlecasei |
|
194 |
193
|
expcom |
|
195 |
194
|
a2d |
|
196 |
27 36 45 54 60 195
|
findcard2s |
|
197 |
196
|
imp |
|