Metamath Proof Explorer


Theorem hashf1lem1OLD

Description: Obsolete version of hashf1lem1 as of 7-Aug-2024. (Contributed by Mario Carneiro, 17-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses hashf1lem2.1 φ A Fin
hashf1lem2.2 φ B Fin
hashf1lem2.3 φ ¬ z A
hashf1lem2.4 φ A + 1 B
hashf1lem1.5 φ F : A 1-1 B
Assertion hashf1lem1OLD φ f | f A = F f : A z 1-1 B B ran F

Proof

Step Hyp Ref Expression
1 hashf1lem2.1 φ A Fin
2 hashf1lem2.2 φ B Fin
3 hashf1lem2.3 φ ¬ z A
4 hashf1lem2.4 φ A + 1 B
5 hashf1lem1.5 φ F : A 1-1 B
6 f1f f : A z 1-1 B f : A z B
7 6 adantl f A = F f : A z 1-1 B f : A z B
8 snfi z Fin
9 unfi A Fin z Fin A z Fin
10 1 8 9 sylancl φ A z Fin
11 2 10 elmapd φ f B A z f : A z B
12 7 11 syl5ibr φ f A = F f : A z 1-1 B f B A z
13 12 abssdv φ f | f A = F f : A z 1-1 B B A z
14 ovex B A z V
15 ssexg f | f A = F f : A z 1-1 B B A z B A z V f | f A = F f : A z 1-1 B V
16 13 14 15 sylancl φ f | f A = F f : A z 1-1 B V
17 difexg B Fin B ran F V
18 2 17 syl φ B ran F V
19 vex g V
20 reseq1 f = g f A = g A
21 20 eqeq1d f = g f A = F g A = F
22 f1eq1 f = g f : A z 1-1 B g : A z 1-1 B
23 21 22 anbi12d f = g f A = F f : A z 1-1 B g A = F g : A z 1-1 B
24 19 23 elab g f | f A = F f : A z 1-1 B g A = F g : A z 1-1 B
25 f1f g : A z 1-1 B g : A z B
26 25 ad2antll φ g A = F g : A z 1-1 B g : A z B
27 ssun2 z A z
28 vex z V
29 28 snss z A z z A z
30 27 29 mpbir z A z
31 ffvelrn g : A z B z A z g z B
32 26 30 31 sylancl φ g A = F g : A z 1-1 B g z B
33 3 adantr φ g A = F g : A z 1-1 B ¬ z A
34 df-ima g A = ran g A
35 simprl φ g A = F g : A z 1-1 B g A = F
36 35 rneqd φ g A = F g : A z 1-1 B ran g A = ran F
37 34 36 eqtrid φ g A = F g : A z 1-1 B g A = ran F
38 37 eleq2d φ g A = F g : A z 1-1 B g z g A g z ran F
39 simprr φ g A = F g : A z 1-1 B g : A z 1-1 B
40 30 a1i φ g A = F g : A z 1-1 B z A z
41 ssun1 A A z
42 41 a1i φ g A = F g : A z 1-1 B A A z
43 f1elima g : A z 1-1 B z A z A A z g z g A z A
44 39 40 42 43 syl3anc φ g A = F g : A z 1-1 B g z g A z A
45 38 44 bitr3d φ g A = F g : A z 1-1 B g z ran F z A
46 33 45 mtbird φ g A = F g : A z 1-1 B ¬ g z ran F
47 32 46 eldifd φ g A = F g : A z 1-1 B g z B ran F
48 47 ex φ g A = F g : A z 1-1 B g z B ran F
49 24 48 syl5bi φ g f | f A = F f : A z 1-1 B g z B ran F
50 f1f F : A 1-1 B F : A B
51 5 50 syl φ F : A B
52 51 adantr φ x B ran F F : A B
53 vex x V
54 28 53 f1osn z x : z 1-1 onto x
55 f1of z x : z 1-1 onto x z x : z x
56 54 55 ax-mp z x : z x
57 eldifi x B ran F x B
58 57 adantl φ x B ran F x B
59 58 snssd φ x B ran F x B
60 fss z x : z x x B z x : z B
61 56 59 60 sylancr φ x B ran F z x : z B
62 res0 F =
63 res0 z x =
64 62 63 eqtr4i F = z x
65 disjsn A z = ¬ z A
66 3 65 sylibr φ A z =
67 66 adantr φ x B ran F A z =
68 67 reseq2d φ x B ran F F A z = F
69 67 reseq2d φ x B ran F z x A z = z x
70 64 68 69 3eqtr4a φ x B ran F F A z = z x A z
71 fresaunres1 F : A B z x : z B F A z = z x A z F z x A = F
72 52 61 70 71 syl3anc φ x B ran F F z x A = F
73 f1f1orn F : A 1-1 B F : A 1-1 onto ran F
74 5 73 syl φ F : A 1-1 onto ran F
75 74 adantr φ x B ran F F : A 1-1 onto ran F
76 54 a1i φ x B ran F z x : z 1-1 onto x
77 eldifn x B ran F ¬ x ran F
78 77 adantl φ x B ran F ¬ x ran F
79 disjsn ran F x = ¬ x ran F
80 78 79 sylibr φ x B ran F ran F x =
81 f1oun F : A 1-1 onto ran F z x : z 1-1 onto x A z = ran F x = F z x : A z 1-1 onto ran F x
82 75 76 67 80 81 syl22anc φ x B ran F F z x : A z 1-1 onto ran F x
83 f1of1 F z x : A z 1-1 onto ran F x F z x : A z 1-1 ran F x
84 82 83 syl φ x B ran F F z x : A z 1-1 ran F x
85 52 frnd φ x B ran F ran F B
86 85 59 unssd φ x B ran F ran F x B
87 f1ss F z x : A z 1-1 ran F x ran F x B F z x : A z 1-1 B
88 84 86 87 syl2anc φ x B ran F F z x : A z 1-1 B
89 51 1 fexd φ F V
90 89 adantr φ x B ran F F V
91 snex z x V
92 unexg F V z x V F z x V
93 90 91 92 sylancl φ x B ran F F z x V
94 reseq1 f = F z x f A = F z x A
95 94 eqeq1d f = F z x f A = F F z x A = F
96 f1eq1 f = F z x f : A z 1-1 B F z x : A z 1-1 B
97 95 96 anbi12d f = F z x f A = F f : A z 1-1 B F z x A = F F z x : A z 1-1 B
98 97 elabg F z x V F z x f | f A = F f : A z 1-1 B F z x A = F F z x : A z 1-1 B
99 93 98 syl φ x B ran F F z x f | f A = F f : A z 1-1 B F z x A = F F z x : A z 1-1 B
100 72 88 99 mpbir2and φ x B ran F F z x f | f A = F f : A z 1-1 B
101 100 ex φ x B ran F F z x f | f A = F f : A z 1-1 B
102 24 anbi1i g f | f A = F f : A z 1-1 B x B ran F g A = F g : A z 1-1 B x B ran F
103 simprlr φ g A = F g : A z 1-1 B x B ran F g : A z 1-1 B
104 f1fn g : A z 1-1 B g Fn A z
105 103 104 syl φ g A = F g : A z 1-1 B x B ran F g Fn A z
106 82 adantrl φ g A = F g : A z 1-1 B x B ran F F z x : A z 1-1 onto ran F x
107 f1ofn F z x : A z 1-1 onto ran F x F z x Fn A z
108 106 107 syl φ g A = F g : A z 1-1 B x B ran F F z x Fn A z
109 eqfnfv g Fn A z F z x Fn A z g = F z x y A z g y = F z x y
110 105 108 109 syl2anc φ g A = F g : A z 1-1 B x B ran F g = F z x y A z g y = F z x y
111 fvres y A g A y = g y
112 111 eqcomd y A g y = g A y
113 simprll φ g A = F g : A z 1-1 B x B ran F g A = F
114 113 fveq1d φ g A = F g : A z 1-1 B x B ran F g A y = F y
115 112 114 sylan9eqr φ g A = F g : A z 1-1 B x B ran F y A g y = F y
116 5 ad2antrr φ g A = F g : A z 1-1 B x B ran F y A F : A 1-1 B
117 f1fn F : A 1-1 B F Fn A
118 116 117 syl φ g A = F g : A z 1-1 B x B ran F y A F Fn A
119 28 53 fnsn z x Fn z
120 119 a1i φ g A = F g : A z 1-1 B x B ran F y A z x Fn z
121 66 ad2antrr φ g A = F g : A z 1-1 B x B ran F y A A z =
122 simpr φ g A = F g : A z 1-1 B x B ran F y A y A
123 118 120 121 122 fvun1d φ g A = F g : A z 1-1 B x B ran F y A F z x y = F y
124 115 123 eqtr4d φ g A = F g : A z 1-1 B x B ran F y A g y = F z x y
125 124 ralrimiva φ g A = F g : A z 1-1 B x B ran F y A g y = F z x y
126 125 biantrurd φ g A = F g : A z 1-1 B x B ran F y z g y = F z x y y A g y = F z x y y z g y = F z x y
127 ralunb y A z g y = F z x y y A g y = F z x y y z g y = F z x y
128 126 127 bitr4di φ g A = F g : A z 1-1 B x B ran F y z g y = F z x y y A z g y = F z x y
129 51 fdmd φ dom F = A
130 129 eleq2d φ z dom F z A
131 3 130 mtbird φ ¬ z dom F
132 131 adantr φ g A = F g : A z 1-1 B x B ran F ¬ z dom F
133 fsnunfv z V x V ¬ z dom F F z x z = x
134 28 53 132 133 mp3an12i φ g A = F g : A z 1-1 B x B ran F F z x z = x
135 134 eqeq2d φ g A = F g : A z 1-1 B x B ran F g z = F z x z g z = x
136 fveq2 y = z g y = g z
137 fveq2 y = z F z x y = F z x z
138 136 137 eqeq12d y = z g y = F z x y g z = F z x z
139 28 138 ralsn y z g y = F z x y g z = F z x z
140 eqcom x = g z g z = x
141 135 139 140 3bitr4g φ g A = F g : A z 1-1 B x B ran F y z g y = F z x y x = g z
142 110 128 141 3bitr2d φ g A = F g : A z 1-1 B x B ran F g = F z x x = g z
143 142 ex φ g A = F g : A z 1-1 B x B ran F g = F z x x = g z
144 102 143 syl5bi φ g f | f A = F f : A z 1-1 B x B ran F g = F z x x = g z
145 16 18 49 101 144 en3d φ f | f A = F f : A z 1-1 B B ran F