Step |
Hyp |
Ref |
Expression |
1 |
|
bren |
|
2 |
|
bren |
|
3 |
|
exdistrv |
|
4 |
|
f1osetex |
|
5 |
4
|
a1i |
|
6 |
|
f1osetex |
|
7 |
6
|
a1i |
|
8 |
|
f1oco |
|
9 |
8
|
adantll |
|
10 |
|
f1ocnv |
|
11 |
10
|
ad2antrr |
|
12 |
|
f1oco |
|
13 |
9 11 12
|
syl2anc |
|
14 |
13
|
ex |
|
15 |
|
vex |
|
16 |
|
f1oeq1 |
|
17 |
15 16
|
elab |
|
18 |
|
vex |
|
19 |
18 15
|
coex |
|
20 |
|
vex |
|
21 |
20
|
cnvex |
|
22 |
19 21
|
coex |
|
23 |
|
f1oeq1 |
|
24 |
22 23
|
elab |
|
25 |
14 17 24
|
3imtr4g |
|
26 |
|
f1ocnv |
|
27 |
26
|
ad2antlr |
|
28 |
|
f1oco |
|
29 |
28
|
ancoms |
|
30 |
29
|
adantlr |
|
31 |
|
f1oco |
|
32 |
27 30 31
|
syl2anc |
|
33 |
32
|
ex |
|
34 |
|
vex |
|
35 |
|
f1oeq1 |
|
36 |
34 35
|
elab |
|
37 |
18
|
cnvex |
|
38 |
34 20
|
coex |
|
39 |
37 38
|
coex |
|
40 |
|
f1oeq1 |
|
41 |
39 40
|
elab |
|
42 |
33 36 41
|
3imtr4g |
|
43 |
17 36
|
anbi12i |
|
44 |
|
coass |
|
45 |
|
f1ococnv1 |
|
46 |
45
|
ad2antrr |
|
47 |
46
|
coeq2d |
|
48 |
9
|
adantrr |
|
49 |
|
f1of |
|
50 |
|
fcoi1 |
|
51 |
48 49 50
|
3syl |
|
52 |
47 51
|
eqtrd |
|
53 |
44 52
|
eqtr2id |
|
54 |
|
coass |
|
55 |
|
f1ococnv2 |
|
56 |
55
|
ad2antlr |
|
57 |
56
|
coeq1d |
|
58 |
30
|
adantrl |
|
59 |
|
f1of |
|
60 |
|
fcoi2 |
|
61 |
58 59 60
|
3syl |
|
62 |
57 61
|
eqtrd |
|
63 |
54 62
|
eqtr3id |
|
64 |
53 63
|
eqeq12d |
|
65 |
|
eqcom |
|
66 |
64 65
|
bitrdi |
|
67 |
|
f1of1 |
|
68 |
67
|
ad2antlr |
|
69 |
|
f1of |
|
70 |
69
|
ad2antrl |
|
71 |
32
|
adantrl |
|
72 |
|
f1of |
|
73 |
71 72
|
syl |
|
74 |
|
cocan1 |
|
75 |
68 70 73 74
|
syl3anc |
|
76 |
|
f1ofo |
|
77 |
76
|
ad2antrr |
|
78 |
|
f1ofn |
|
79 |
78
|
ad2antll |
|
80 |
13
|
adantrr |
|
81 |
|
f1ofn |
|
82 |
80 81
|
syl |
|
83 |
|
cocan2 |
|
84 |
77 79 82 83
|
syl3anc |
|
85 |
66 75 84
|
3bitr3d |
|
86 |
85
|
ex |
|
87 |
43 86
|
syl5bi |
|
88 |
5 7 25 42 87
|
en3d |
|
89 |
88
|
exlimivv |
|
90 |
3 89
|
sylbir |
|
91 |
1 2 90
|
syl2anb |
|