Metamath Proof Explorer


Theorem hashfingrpnn

Description: A finite group has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses hashfingrpnn.1 B = Base G
hashfingrpnn.2 φ G Grp
hashfingrpnn.3 φ B Fin
Assertion hashfingrpnn φ B

Proof

Step Hyp Ref Expression
1 hashfingrpnn.1 B = Base G
2 hashfingrpnn.2 φ G Grp
3 hashfingrpnn.3 φ B Fin
4 2 grpmndd φ G Mnd
5 1 4 3 hashfinmndnn φ B