Metamath Proof Explorer


Theorem hashfinmndnn

Description: A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses hashfinmndnn.1 B = Base G
hashfinmndnn.2 φ G Mnd
hashfinmndnn.3 φ B Fin
Assertion hashfinmndnn φ B

Proof

Step Hyp Ref Expression
1 hashfinmndnn.1 B = Base G
2 hashfinmndnn.2 φ G Mnd
3 hashfinmndnn.3 φ B Fin
4 hashcl B Fin B 0
5 3 4 syl φ B 0
6 eqid 0 G = 0 G
7 1 6 mndidcl G Mnd 0 G B
8 2 7 syl φ 0 G B
9 8 3 hashelne0d φ ¬ B = 0
10 9 neqned φ B 0
11 elnnne0 B B 0 B 0
12 5 10 11 sylanbrc φ B